Смотреть страницы где упоминается термин пуассоновский поток. Определение Пуассоновского потока. Свойства А также другие работы, которые могут Вас заинтересовать

  • 19.11.2023

В пуассоновском потоке событий (стационарном и нестационарном) число событий потока , попадающих на любой участок, распределено по закону Пуассона  


Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий - это поток, обладающий двумя свойствами ординарностью и отсутствием последействия.  

В данном параграфе устанавливается связь между пуассоновскими потоками событий и с непрерывным временем. Показывается, как используется интенсивность пуассоновских стационарных потоков в качестве плотностей вероятностей переходов системы из состояния в состояние при анализе моделей конкретных ситуаций.  

Между пуассоновскими потоками событий и дискретными марковскими процессами с непрерывным временем имеется тесная связь.  

Связь пуассоновских потоков событий с дискретными марковскими процессами с непрерывным временем  

То есть технически, марковскую модель с непрерывным временем построить проще, чем модель с дискретным временем, хотя проблема подчинения пуассоновскому закону распределения всех потоков событий , переводящих элементы системы из состояния в состояние, остается.  

Можно считать, что события, переводящие автомобиль из состояния в состояние, представляют собой потоки событий (например, потоки отказов). Если все потоки событий , переводящие систему (автомобиль) из состояния в состояние, пуассоновские (стационарные или нестационарные), то процесс, протекающий в системе, будет марковским, а плотности вероятности перехода Ху в непрерывной цепи Маркова представляют собой интенсивности потока событий, переводящего систему из состояния Si в состояние Sj. Например, Х03 - интенсивность потока отказов автомобиля, который переводит автомобиль из состояния исправен, работает в состояние находится в ТР.  

Допущения о пуассоновском характере потока событий и о показательном распределении промежутков времени между событиями ценны тем, что позволяют на практике применить мощный аппарат марковских случайных процессов .  

Пуассоновский стационарный (простейший) поток событий  

Пуассоновский стационарным (простейшим) поток событий  

Пуассоновский нестационарный поток событий  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Основное характеристическое свойство нестационарного пуассоновского потока состоит в том, что вероятность наступления определенного числа событий за временной промежуток зависит не только от его длины, но и от момента его начала.  

Одной из основных стохастических характеристик нестационарного пуассоновского потока является дискретная случайная величина X(t т), представляющая собой случайное число событий, наступающих в потоке за промежуток [ t.+t.  

Другой основной стохастической характеристикой нестационарного пуассоновского потока является случайный интервал времени T(tB) между двумя соседними событиями, первое из которых наступило в момент t0.  

Доказательство Вероятность p (t At) того, что система S, находившаяся в момент времени t в состоянии sp за промежуток времени от t до t+Ы перейдет из него в состояние s (см. 4) равна элементу вероятности pfa t) появления события в пуассоновском потоке П.. на элементарном участке от t до +Д (см. Определение 5.11). Но (см. (4.3))  

Система, в которой протекает дискретный марковский процесс с непрерывным временем, перескакивает из одного состояния х в другое xj не самопроизвольно, а под воздействием определенного события, которое мы можем отнести к событиям некоторого пуассоновского потока П.. и считать, таким образом, что переход системы из состояния х в состояние х происходит под воздействием всего потока /L. Привлечение всего потока П.. дает нам возможность рассматривать интенсивность А() этого потока.  

Рассмотрим более подробно случай пуассоновского распределения спроса. Функция затрат будет иметь вид, аналогичный (5.6.18), с заменой интегрирования по х суммированием. Найдем плотность 1> (т) распределения времени дефицита. Распределение времени наступления k -го события пуассоновского потока подчинено закону Эрланга k -го порядка. Дефицит начинается при израсходовании всего запаса S и еще одной единицы, так что  

Общий поток отказов, связанный с попаданием автомобилей исследуемой группы в ТО-2, получается путем наложения (суперпозиции) потоков ТО-2 этих автомобилей. Как показывают расчеты, распределение интервала пробега между событиями в этом потоке подчиняется показательному закону . При этом поток ТО-2 всех исследуемых автомобилей является пуассоновским.  

Образ потока отказов, связанного со списанием автомобиля, является условным. Действительно, если автомобиль отказывает в тот момент, когда происходит первое событие данного потока, то совершенно все равно, продолжается после этого поток отказов или прекращается судьба автомобиля от этого уже не зависит. В случае когда элемент (автомобиль) не подлежит восстановлению, поток отказов является пуассоновским.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых)

Информатика, кибернетика и программирование

Определение Пуассоновского потока. Пуассоновский поток это ординарный поток без последействия. Классической моделью трафика в информационных сетях является Пуассоновский простейший поток. Он характеризуется набором вероятностей Pk поступления k сообщений за временной интервал t: где k=01 число сообщений; λ интенсивность потока.

1. Определение Пуассоновского потока. Свойства.

Пуассоновский поток - это ординарный поток без последействия.

Классической моделью трафика в информационных сетях является Пуассоновский (простейший) поток. Он характеризуется набором вероятностей P(k) поступления k сообщений за временной интервал t:

где k=0,1,… - число сообщений; λ - интенсивность потока.

Заметим, что интервал времени измерения количества сообщений t и интенсивность потока λ являются постоянными величинами.

Семейство Пуассоновских распределений P(k) в зависимости от λ изображено на рис.1. Большее значение λ соответствует более широкому и симметричному графику плотности вероятности.

Рис. 1. Пуассоновские распределения. Плотности вероятностей.

Математическое ожидание (среднее) и дисперсия Пуассоновского потока равны λ t .

Зная вероятность поступления данных за период, можно получить распределение интервала τ между соседними событиями:

Отсюда вывод: пуассоновский поток характеризуется экспоненциальным распределением интервалов между событиями.

Основным свойством пуассоновского потока , обусловливающим его широкое применение при моделировании, является аддитивность: результирующий поток суммы пуассоновских потоков тоже является пуассоновским с суммарной интенсивностью:

При моделировании Пуассоновский поток можно получить мультиплексированием совокупности ON/OFF источников, которые называются Марковскими процессами (рис.2.).

Рис. 2. Получение Пуассоновского распределения

2. СМО с отказами (классическая система Эрланга)

Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в 1909 г. датским инженером-математиком А.К. Эрлангом. Задача ставится так: имеется n каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний каждого канала имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 ,…, S n , где S k – состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения (рис. 3).

Рис. 3. Граф состояний СМО

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживаний будет 2μ . Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 , будет иметь интенсивность 3μ , т.е. может освободиться любой из трех каналов, и т.д.

В формуле (1) для схемы гибели и размножения получим для предельной вероятности состояния:

(1)

где члены разложения - коэффициенты при p 0 в выражениях для предельных вероятностей p 1 , p 2 ,..., p n .

Заметим, что в формулу (1) интенсивности λ и μ входят не по отдельности, а только в виде отношения μ/λ. Обозначим: μ/λ = p , и будем называть величину ρ приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулу (1) в виде:

(2)

При этом:

(3)

Формулы (2) и (3) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все n каналов системы будут заняты, т.е.

Отсюда находим относительную пропускную способность – вероятность того, что заявка будет обслужена:

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ на Q:

(4)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0,1,..., n и вероятностями этих значений p 0 , p 1 , …, p n :

Подставляя сюда выражения (3) для p k и выполняя соответствующие преобразования, мы, в конце концов, получили бы формулу для k. Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность A системы есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов:

или, учитывая (4):


А также другие работы, которые могут Вас заинтересовать

58607. Табличные информационные модели 106.5 KB
Предмет усвоения: табличные информационные модели таблица типа объекты-свойства таблица типа объекты-объекты один таблица типа объекты объекты несколько таблица типа объекты свойства объекты. Средства усвоения: Логический анализ: Таблица типа ОС это таблица содержащая информацию...
58610. Семейное право 50.5 KB
Цель урока: дать характеристику основ семейного права РФ и продолжить формирование способностей учащихся к выбору действий и поступков в морально-правовой ситуации в соответствии с нормами семейного законодательства и морали. Задачи урока: формирование системы знаний семейного права...
58612. Менеджмент 33.5 KB
Ход урока. Мы с вами вместе вспомнили о менеджменте его функциях факторах внутренней и внешней среды менеджмента роли коммуникаций Самоанализ урока Анализ структуры. На данном занятии присутствовали все основные этапы прохождения урока.
58613. Темперамент и выбор профессии 60.5 KB
Задачи урока: Образовательная ознакомить учащихся с понятиями тип темперамента характер; Развивающая развить у учащихся интерес к выбору будущей профессии; Воспитательная содействовать воспитанию трудолюбия стремления к выбору будущей профессии...
58615. Урок по рендерингу анимации 3d Max. Экспорт анимации 3d Max в видео 230.5 KB
В разделе Render Output нажимаем кнопку Files и переходим в папку или создаём новую куда будем сохранять получившиеся кадры анимации. Нажимаем кнопку Sve для возврата в окно Render Setup Запускаем визуализацию нажатием на кнопку Render.

Описывает количество наступивших случайных событий, происходящих с постоянной интенсивностью.

Вероятностные свойства потока Пуассона полностью характеризуются функцией Λ(А) , равной приращению в интервале А некоторой убывающей функции. Чаще всего поток Пуассона имеет мгновенное значение параметра λ(t) - функцию, в точках непрерывности которой вероятность события потока в интервале равна λ(t)dt . Если А - отрезок , то

Λ (A) = ∫ a b λ (t) d t {\displaystyle \Lambda (A)=\int \limits _{a}^{b}\lambda (t)\,dt}

Поток Пуассона, для которого λ(t) равна постоянной λ , называется простейшим потоком с параметром λ .

Потоки Пуассона определяются для многомерного и вообще любого абстрактного пространства, в котором можно ввести меру Λ(А) . Стационарный поток Пуассона в многомерном пространстве характеризуется пространственной плотностью λ . При этом Λ(А) равна объему области А , умноженному на λ .

Классификация

Различают два вида процессов Пуассона: простой (или просто: процесс Пуассона) и сложный (обобщённый).

Простой процесс Пуассона

Пусть λ > 0 {\displaystyle \lambda >0} . Случайный процесс { X t } t ≥ 0 {\displaystyle \{X_{t}\}_{t\geq 0}} называется однородным Пуассоновским процессом с интенсивностью λ {\displaystyle \lambda } , если

Сложный (обобщённый) пуассоновский процесс

Обозначим через S k {\displaystyle S_{k}} сумму первых k элементов введённой последовательности.

Тогда определим сложный Пуассоновский процесс { Y t } {\displaystyle \{Y_{t}\}} как S N (t) {\displaystyle S_{N(t)}} .

Свойства

  • Пуассоновский процесс принимает только неотрицательные целые значения, и более того
P (X t = k) = λ k t k k ! e − λ t , k = 0 , 1 , 2 , … {\displaystyle \mathbb {P} (X_{t}=k)={\frac {\lambda ^{k}t^{k}}{k!}}e^{-\lambda t},\quad k=0,1,2,\ldots } .
  • Траектории процесса Пуассона - кусочно-постоянные, неубывающие функции со скачками равными единице почти наверное. Более точно
P (X t + h − X t = 0) = 1 − λ h + o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}=0)=1-\lambda h+o(h)} P (X t + h − X t = 1) = λ h + o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}=1)=\lambda h+o(h)} P (X t + h − X t > 1) = o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}>1)=o(h)} при h → 0 {\displaystyle h\to 0} ,

где o (h) {\displaystyle o(h)} обозначает «о малое» .

Критерий

Для того чтобы некоторый случайный процесс { X t } {\displaystyle \{X_{t}\}} с непрерывным временем был пуассоновским (простым, однородным) или тождественно нулевым достаточно выполнение следующих условий:

Информационные свойства

Зависит ли T {\displaystyle T} от предыдущей части траектории?
P ({ T > t + s ∣ T > s }) {\displaystyle \mathbb {P} (\{T>t+s\mid T>s\})} - ?

Пусть u (t) = P (T > t) {\displaystyle u(t)=\mathbb {P} (T>t)} .

U (t ∣ s) = P (T > t + s ∩ T > s) P (T > s) = P (T > t + s) P (T > s) {\displaystyle u(t\mid s)={\frac {\mathbb {P} (T>t+s\cap T>s)}{\mathbb {P} (T>s)}}={\frac {\mathbb {P} (T>t+s)}{\mathbb {P} (T>s)}}}
u (t ∣ s) u (s) = u (t + s) {\displaystyle u(t\mid s)u(s)=u(t+s)}
u (t ∣ s) = s (t) ⇔ u (t) = e − α t {\displaystyle u(t\mid s)=s(t)\Leftrightarrow u(t)=e^{-\alpha t}} .
Распределение длин промежутков времени между скачка́ми обладает свойством отсутствия памяти ⇔ оно показательно .

X (b) − X (a) = n {\displaystyle X(b)-X(a)=n} - число скачков на отрезке [ a , b ] {\displaystyle } .
Условное распределение моментов скачков τ 1 , … , τ n ∣ X (b) − X (a) = n {\displaystyle \tau _{1},\dots ,\tau _{n}\mid X(b)-X(a)=n} совпадает с распределением вариационного ряда, построенного по выборке длины n {\displaystyle n} из R [ a , b ] {\displaystyle R} .

Плотность этого распределения f τ 1 , … , τ n (t) = n ! (b − a) n I (t j ∈ [ a , b ] ∀ j = 1 , n ¯) {\displaystyle f_{\tau _{1},\dots ,\tau _{n}}(t)={\frac {n!}{(b-a)^{n}}}\mathbb {I} (t_{j}\in \ \forall j={\overline {1,n}})}

ЦПТ

  • Теорема.

P (X (t) − λ t λ t < x) ⇉ x λ t → ∞ Φ (x) ∼ N (0 , 1) = 1 2 π ∫ − ∞ x e − u 2 2 d u {\displaystyle \mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}}

Скорость сходимости:
sup x | P (X (t) − λ t λ t < x) − Φ (x) | ⩽ C 0 λ t {\displaystyle \sup \limits _{x}{\biggl |}\mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}},
где C 0 {\displaystyle C_{0}} - константа Берри-Эссеена .

Применение

Поток Пуассона служит для моделирования различных реальных потоков: несчастных случаев, потока заряженных частиц из космоса, отказов оборудования и других. Так же возможно применение для анализа финансовых механизмов, таких как поток платежей и других реальных потоков. Для построения моделей различных систем обслуживания и анализа их пригодности.

Использование потоков Пуассона значительно упрощает решение задач систем массового обслуживания , связанных с расчетом их эффективности. Но необоснованная замена реального потока потоком Пуассона там, где это недопустимо, приводит к грубым просчетам.

На практике чаще всего ограничиваются рассмотрением простейшего (пуассоновского) потока заявок.

Определение. Поток событий, обладающий свойствами ординарности, стационарности и отсутствия последействия , называется простейшим (или стационарным пуассоновским) потоком . Для простейшего потока событий вероятность того, что на участке времени длины t наступит ровно k событий, имеет распределение Пуассона и определяется по формуле:

Р{X(t,t) = k} = a k e -a /k! (k=0, 1, 2,…),

где а = lt , l – интенсивность потока.

Физический смысл интенсивности потока событий – это среднее число событий, приходящееся на единицу времени (число заявок в единицу времени), размерность – 1/время.

Простейшим этот поток назван потому, что исследование систем, находящихся под воздействием простейших потоков, проводится самым простым образом.

Распределение интервалов между заявками для простейшего потока будет экспоненциальным (показательным) с функцией распределения и плотностью , где – интенсивность поступления заявок в СМО.

Рассмотрим основные свойства простейшего потока:

Стационарность;

Ординарность;

Отсутствие последействия.

Стационарность . Свойство стационарности проявляется в том, что вероятность попадания того или иного числа событий на участок времени зависит только от длины участка и не зависит от его расположения на оси . Другими словами, стационарность означает неизменность вероятностного режима потока событий во времени. Поток, обладающий свойством стационарности, называют стационарным . Для стационарного потока среднее число событий, воздействующих на систему в течение единицы времени, остаётся постоянным. Реальные потоки событий в экономике предприятия яв­ляются в действительности стационарными лишь на ограниченных участках времени.

Ординарность. Свойство ординарности потока присутствует, если вероятность попадания на элементарный участок времени двух и более событий пренебрежимо мала по сравнению с длиной этого участка. Свойство ординарности означает, что за малый промежуток времени практически невозможно появление более одного события. Поток, обладающий свойством ординарности, называют ор­динарным. Реальные потоки событий в различных экономических системах либо являются ординарными, либо могут быть достаточно просто приведены к ординарным.

Отсутствие последействия . Данное свойство потока состоит в том, что для любых непересекающихся участков времени количество событий, попадающих на один из них, не зависит от того, сколько событий попало на другие участки времени. Поток, обладающий свойством отсутствия последействия, называют потоком без последействия .


Поток событий, одновременно обладающий свойствами стационарности, ординарности и отсутствия последействия, называется простейшим потоком событий.

2.6. Компоненты и классификация

моделей систем массового обслуживания (СМО)

Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудниками Копенгагенской телефонной компании, датским учёным А. К. Эрлангом (1878–1929 гг.) в период между 1908 и 1922 гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, работа морских и речных портов, магазинов, терминальных классов, радиолокационных комплексов, радиолокационных станций и т. д. и т. п. может быть описана в рамках ТСМО.

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить посты технического обслуживания автомобилей; любое предприятие сферы сервиса; персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач; аудиторские фирмы; отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчётности предприятий; телефонные станции и т. д.

Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания. Причём на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, наладки и т. д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

Основными компонентами системы массового обслуживания любого вида являются:

Входной поток поступающих требований или заявок на обслуживание;

Дисциплина очереди;

Механизм обслуживания.

Входной поток требований . Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идёт о системе обслуживания с параллельно-групповым обслуживанием.

Дисциплина очереди – это важный компонент системы массового обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

– первым пришёл – первый обслуживаешься (FIFO);

– пришёл последним – обслуживаешься первым (LIFO);

– случайный отбор заявок (RANDOM);

– отбор заявок по критерию приоритетности (PR);

– ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания или количеством мест, что ассоциируется с понятием «допустимая длина очереди»).

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента, и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Cистема обслуживания может иметь не один канал обслуживания, а несколько – система такого рода способна обслуживать одновременно несколько требований. В этом случае, если все каналы обслуживания предлагают одни и те же услуги, можно утверждать, что имеет место параллельное обслуживание – многоканальная система.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно.

Рассмотрев основные компоненты систем обслуживания, можно утверждать, что функциональные возможности любой систе­мы массового обслуживания определяются следующими основными факторами:

Вероятностное распределение моментов поступлений заявок на обслуживание (единичных или групповых);

Вероятностное распределение времени продолжительности обслуживания;

Конфигурация обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);

Количество и производительность обслуживающих каналов;

Дисциплина очереди;

Мощность источника требований.

В системах с ограниченным ожиданием может ограничиваться длина очереди, время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоявшая в очереди, ждёт обслуживание неограниченно долго, т. е. пока не подойдёт очередь.

Приведённая классификация СМО является условной. На практике чаще всего системы массового обслуживания выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определённого момента, после чего система начинает работать как система с отказами.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью её функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

Вероятность немедленного обслуживания поступившей заявки;

Вероятность отказа в обслуживании поступившей заявки;

Относительная и абсолютная пропускная способность системы;

Средний процент заявок, получивших отказ в обслуживании;

Среднее время ожидания в очереди;

Средняя длина очереди;

Средний доход от функционирования системы в единицу времени.

Случайный характер потока заявок и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса, происходящего в системе массового обслуживания (СМО), различают марковские и немарковские. Независимо от характера процесса, протекающего в системе массового обслуживания, различают два основных вида СМО:

· системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и покидает очередь;

· системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Для указания типа СМО используются общепринятые обозначения Кендалла – Баша: X/Y/Z/m ,

где X – вид закона распределения интервалов поступления заявок;
Y – вид закона распределения времени обслуживания заявок;
Z – число каналов;

m – число мест в очереди.

В обозначениях вида закона распределения буква M соответствует экспоненциальному распределению (от слова Марковиан ), буква E – распределению Эрланга, R – равномерному распределению и D – детерминированной величине.

Например, запись M/M/1 означаетодноканальную систему с экспоненциальными распределениями времени поступления и обслуживания заявок (М – марковская) без очереди.

2.7. Расчёт основных характеристик СМО

на основе использования их аналитических моделей

Рассмотрим такие СМО, в которых возможные состояния системы образуют цепь и каждое состояние, кроме исходного и последнего, связано прямой и обратной связью с двумя соседними состояниями. Такая схема процесса, протекающего в системе, называется схемой «гибели и размножения». Термин ведёт начало от биологических задач, процесс описывает изменение численности популяции.

Если в такой системе все потоки, переводящие систему из состояния в состояние пуассоновские, то процесс называется марковским случайным процессом «гибели и размножения».

Заметим, что в таких системах все состояния являются существенными, а значит, существуют финальные вероятности состояний, которые можно найти из линейной системы уравнений Эрланга.

На практике значительная часть систем (СМО) может описываться в рамках процесса «гибели и размножения».

Рассмотрим некоторые типы таких систем:

а) одноканальные с отказами (без очереди);

б) одноканальные с ограниченной очередью;

в) многоканальные с отказами (без очереди);

г) многоканальные с ограниченной очередью.

Если число n испытаний достаточно велико, а вероятность p наступления события А в независимых испытаниях мала, то для нахождения вероятности используется теорема Пуассона : Если в n независимых испытаниях вероятность p наступления события А в каждом из них постоянна и мала, а число испытаний достаточно велико, то вероятность того, что событие А наступит k раз, вычисляется по формуле , где .

Эта формула называется формулой Пуассона .

Пример 15 . Вероятность попадания в самолёт при каждом выстреле из пулемёта равна 0.001. Производится 3000 выстрелов. Найти вероятность попадания в самолёт: а) один или два раза; б) хотя бы один раз.

Решение . По условию примера n =300, p =0.001, .

а) Обозначим событие A={попадание в самолёт один или два раза}. Тогда .

б) Обозначим событие B={попадание в самолёт хотя бы один раз}. Тогда .

Потоком событий называется последовательность событий, которые наступают одно за другим в случайные моменты времени.

Например, поток вызовов в сфере обслуживания (ремонт телевизоров, вызовы скорой помощи и др.), поток вызовов на телефонной станции, отказ в работе отдельных частей некоторой системы и т.д.

Поток называется простейшим , если выполняются следующие условия:

Вероятность появления события зависит от длины промежутка времени t ;

Вероятность появления числа событий на любом промежутке времени не зависит от того, какое число событий наступило до начала этого промежутка;

Вероятность наступления двух или большего числа событий за достаточно малый промежуток времени мала и чем меньше , тем меньше становится вероятность.

При выполнении этих условий справедливо следующее утверждение:

Вероятность того, что случайное событие за время t наступит k раз, определяется по формуле

,

где - среднее число событий, наступающих в единицу времени.

Пример 16 . На ткацких станках, обслуживаемых ткачихой, в течение часа происходит 90 обрывов нити. Какова вероятность того, что за 4 минуты произойдёт: 1) один обрыв; 2) хотя бы один обрыв.

Решение . По условию t =4. Среднее число обрывов за одну минуту равно . Тогда .



1) . 2) .

Вопросы для самоконтроля знаний

1. Что называется суммой совместных событий?

2. Что называется суммой несовместных событий?

3. Как формулируется теорема сложения вероятностей несовместных событий?

4. Чему равна сумма вероятностей противоположных событий?

5. Что называется произведением двух событий?

6. Какие события называются независимыми?

7. Как формулируется теорема умножения вероятностей независимых событий?

8. Какие события называются зависимыми?

9. Что называется условной вероятностью?

10. Как формулируется теорема умножения вероятностей зависимых событий?

11. Что называется полной вероятностью события и как записывается формула полной вероятности?

12. Как записывается формула Байеса?

13. Какие испытания называются независимыми и как записывается формула Бернулли?

14. Как формулируется локальная теорема Лапласа?

15. Как формулируется интегральная теорема Лапласа?

16. Как формулируется теорема Пуассона?