Метод электронного баланса и ионно-электронный метод (метод полуреакций). ЦУ (ценные указания) Электронное уравнение пример

  • 27.11.2023

Для начала нужно убедиться, что представленная в уравнении реакция является ОВР (Окислительно-востановительная р-ция). Следует помнить, что к реакциям ОВР не относятся р-ции обмена. Прим. H2SO4 + NaOH → Na2SO4 + H2O – реакция обмена, степени окисления не изменяются.

2 шаг

Убедившись что это ОВР, приступим к расставлению коэффициентов. Для начала нужно расставить степени окисления над каждым элементом реакции. Смотри рис.2.
Можно увидеть что в некоторых элементах степень окисления изменилась. Метод баланса и заключатся в том, что бы использовать изменение степеней окисления.

3 шаг

Теперь непосредственно электронный баланс.
Обычно делается так: Смотри Рис.3.
Примечание: Нужно расставить коэффициенты, если они требуются.
Теперь объясню что здесь произошло, у азота(N) было три лишних электрона(¯e) в реакции он теряет все лишние электроны.
С кислородом (O2) происходит обратное – он приобретает электроны, т.к. в соединениях забирает электроны от других элементов.
В итоге у нас получились два числа – 6 и 4, они кратны числу 2, получаем 3 и 2. Потом меняем их местами (Почему? Да даже не думайте почему =)). Эти два числа и помогут нам уравнять нашу реакцию.

Метод электронного баланса

Метод электронного баланса - один из методов уравнивания окислительно-восстановительных реакций (ОВР).Заключается в том чтобы на основании степеней окисления расставить коэффициенты в ОВР.Для правильного уравнивания следует придерживаться определённой последовательности действий:

  1. Найти окислитель и восстановитель.
  2. Составить для них схемы (полуреакции) переходов электронов, отвечающие данному окислительно-восстановительному процессу.
  3. Уравнять число отданных и принятых электронов в полуреакциях.
  4. Просуммировать порознь левые и правые части полуреакций.
  5. Расставить коэффициенты в уравнении окислительно восстановительной реакции.

Теперь рассмотрим конкретный пример

Дана реакция: Li + N 2 = Li 3 N

1. Находим окислитель и восстановитель:

Li 0 + N 2 0 = Li 3 +1 N −3

N присоединяет электроны, он-окислитель

Li отдаёт электроны, он-восстановитель

2. Составляем полуреакции:

Li 0 - 1e = Li +1

N 2 0 + 6e = 2N −3

3. Теперь уравняем число отданных и принятых электронов в полуреакции:

6* |Li 0 - 1e = Li +1

1* |N 2 0 + 6e = 2N −3

Получаем:

6Li 0 - 6e = 6Li +1

N 2 0 + 6e = 2N −3

4. Просуммируем порознь левые и правые части полуреакций:

6Li + N 2 = 6Li +1 + 2N −3

5. Расставим коэффициенты в окислительно-восстановительной реакции:

6Li + N 2 = 2Li 3 N

Рассмотрим более сложный пример

Дана реакция: FeS + O 2 = Fe 2 O 3 + SO 2

В результате реакции происходит окисление атомов железа, окисление атомов серы и восстановление атомов кислорода.

1. Записываем полуреакции для серы и железа:

Fe +2 - 1e = Fe +3

S −2 - 6e = S +4

Суммарно для обоих процессов можно записать так:

Fe +2 + S −2 - 7e = Fe +3 + S +4

Записываем полуреакцию для кислорода:

O 2 +4e = 2O −2

2. Уравниваем число отданных и принятых электронов в двух полуреакциях:

4*| Fe +2 + s −2 - 7e = Fe +3 + S +4

7*| O 2 + 4e = 2O −2

3. Просуммируем обе полуреакции:

4Fe +2 + 4S −2 + 7O 2 = 4Fe +3 + 4S +4 + 14O −2

4. Расставим коэффициенты в окислительно-восстановительной реакции:

4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2


Wikimedia Foundation . 2010 .

Смотреть что такое "Метод электронного баланса" в других словарях:

    Химическим уравнением (уравнением химической реакции) называют условную запись химической реакции с помощью химических формул, числовых коэффициентов и математических символов. Уравнение химической реакции даёт качественную и количественную… … Википедия

    Окислительно восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел (См. Окислительное число) атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, конец 18 в.)… …

    Окисление восстановление, окислительно восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, конец 18 в.)… … Большая советская энциклопедия

    Техника многократного получения одинаковых изображений (оттисков) путем переноса красочного слоя с печатной формы на бумагу или другой материал. Собственно процесс переноса изображения с печатной формы на бумагу называется печатанием. Но это… … Энциклопедия Кольера

    Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… … Большая советская энциклопедия

    Электронные деньги - (Electronic money) Электронные деньги это денежные обязательства эмитента в электронном виде Все, что нужно знать об электронных деньгах история и развитие электронных денег, перевод, обмен и вывод электронных денег в различных платежных системах … Энциклопедия инвестора

    система - 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

    Денежно-кредитная политика - (Monetary policy) Понятие денежно кредитной политики, цели денежно кредитной политики Информация о понятии денежно кредитной политики, цели денежно кредитной политики Содержание >>>>>>>>>> … Энциклопедия инвестора

    Оптовые запасы - (Wholesale Inventories) Определение оптовых запасов, торговые и складские запасы Информация об определении оптовых запасов, торговые и складские запасы Содержание Содержание Виды запасов и их характеристики Торговые и складские запасы Принципы… … Энциклопедия инвестора

    Рецессия - (Recession) Содержание >>>>>>>>> Рецессия это, определение это производительности, которое характеризует нулевой или отрицательный основной показатель внутренний валовый продукт, протекающий на протяжении полугода и более … Энциклопедия инвестора


Дано задание: «По данным схемам составьте схемы электронного баланса». Как его выполнить? Что для этого потребуется? Попробуем разобраться вместе.

Суть метода

Для начала остановимся на том, что представляет собой данный метод. Если схема электронного баланса составлена правильно, можно поставить в предложенной реакции все стереохимические коэффициенты.

Суть данной методики заключается в определении степеней окисления отдельных элементов, которые участвовали во реакции. Если в левой и правой частях уравнения у элемента сохраняется постоянная то схема электронного баланса составляется без него.

У элементов, которые поменяли свою степень окисления в процессе взаимодействия, полученные значения учитываются при вычислениях наименьшего общего кратного.

Как составить баланс

Для начала вам придется поставить у каждого элемента его степени окисления, пользуясь определенными правилами. Если во взаимодействие вступало простое вещество, то оно не принимает, а также не отдает другому элементу электроны, следовательно, его степень окисления равна нулю. Примерами соединений с нулевой степенью окисления являются молекулы галогенов, металлы.

В бинарном соединении у второго элемента степень окисления имеет отрицательное, а у первого - положительное значение. В сумме (с учетом числа атомов) должен получиться ноль. В оксиде кальция, например, у первого элемента степень окисления +2, а у второго (кислорода) -2. Суммарное их значение равно нулю, так как молекула нейтральна.

Если необходимо расставить степени окисления в более сложном веществе, то сначала определяют показатели у первого и последнего элементов. Затем, пользуясь математическими вычислениями, определяют степень окисления у центрального элемента. Сумма всех показателей должна быть равна нулю.

Алгоритм действий

Как же составляется схема электронного баланса? В левой ее части записывают вместе со степенями окисления элементы, которые участвовали в окислительно-восстановительном процессе.

Далее знаками «плюс» и «минус» указывается количество принятых и отданных электронов в ходе химического взаимодействия. Между определяется наименьшее общее кратное. Напомним, что под ним подразумевается положительное число, которое будет без остатка делиться на обе цифры, касающиеся электронов.

Схема электронного баланса считается полной в том случае, когда в ней определены и коэффициенты. Как их найти? необходимо разделить на принятые и отданные в процессе электроны. Полученные цифры и будут стереохимическими коэффициентами.

Важно также определить восстановитель и окислитель, а также протекающие при взаимодействии процессы (окисление и восстановление). Полученная схема электронного баланса окислительно-восстановительного процесса позволит вам расставить недостающие коэффициенты в реакции.

Задания на ОВР в итоговой аттестации

На основании данного метода выпускникам предлагается выполнение задания из уровня «С». Успешность зависит от уровня практических навыков ученика, степени владения теоретическими основами.

Например, в задании сказано: по данным схемам составьте схемы электронного баланса. Кроме того, часть реагирующих веществ, а также некоторые продукты взаимодействия могут быть упущены. Данный вопрос считается заданием повышенной сложности, поэтому предполагает определенную последовательность рассуждений.

Для начала у всех элементов в известных веществах определяют степени окисления, затем записывают вещества, которых не хватает в обеих частях реакции.

В тестах ЕГЭ по химии предполагается отдельная запись веществ, непосредственно участвующих в уравнении, с последующим указанием окислителя и восстановителя.

Заключение

Такой метод является далеко не единственным способом расстановки коэффициентов в уравнении. Можно воспользоваться и который позволяет уравнивать сразу все вещества, записанные в уравнении.

Задачник по общей и неорганической химии

2.2. Окислительно-восстановительные реакции

Смотрите задания >>>

Теоретическая часть

К окислительно-восстановительным реакциям относятся химические реакции, которые сопровождаются изменением степеней окисления элементов. В уравнениях таких реакций подбор коэффициентов проводят составлением электронного баланса . Метод подбора коэффициентов с помощью электронного баланса складывается из следующих этапов:

а) записывают формулы реагентов и продуктов, а затем находят элементы, которые повышают и понижают свои степени окисления, и выписывают их отдельно:

MnCO 3 + KClO 3 ® MnO 2 + KCl + CO 2

Cl V ¼ = Cl - I

Mn II ¼ = Mn IV

б) составляют уравнения полуреакций восстановления и окисления, соблюдая законы сохранения числа атомов и заряда в каждой полуреакции :

полуреакция восстановления Cl V + 6 e - = Cl - I

полуреакция окисления Mn II - 2 e - = Mn IV

в) подбирают дополнительные множители для уравнения полуреакций так, чтобы закон сохранения заряда выполнялся для реакции в целом, для чего число принятых электронов в полуреакциях восстановления делают равным числу отданных электронов в полуреакции окисления:

Cl V + 6 e - = Cl - I 1

Mn II - 2 e - = Mn IV 3

г) проставляют (по найденным множителям) стехиометрические коэффициенты в схему реакции (коэффициент 1 опускается):

3 MnCO 3 + KClO 3 = 3 MnO 2 + KCl + CO 2

д ) уравнивают числа атомов тех элементов, которые не изменяют своей степени окисления при протекании реакции (если таких элементов два, то достаточно уравнять число атомов одного из них, а по второму провести проверку). Получают уравнение химической реакции:

3 MnCO 3 + KClO 3 = 3 MnO 2 + KCl + 3 CO 2

Пример 3 . Подберите коэффициенты в уравнении окислительно-восстановительной реакции

Fe 2 O 3 + CO ® Fe + CO 2

Решение

Fe 2 O 3 + 3 CO = 2 Fe +3 CO 2

Fe III + 3 e - = Fe 0 2

C II - 2 e - = C IV 3

При одновременном окислении (или восстановлении) атомов двух элементов одного вещества расчет ведут на одну формульную единицу этого вещества.

Пример 4. Подберите коэффициенты в уравнении окислительно-восстановительной реакции

Fe(S) 2 + O 2 = Fe 2 O 3 + SO 2

Решение

4 Fe(S) 2 + 11 O 2 = 2 Fe 2 O 3 + 8 SO 2

Fe II - e - = Fe III

- 11 e - 4

2S - I - 10 e - = 2S IV

O 2 0 + 4 e - = 2O - II + 4 e - 11

В примерах 3 и 4 функции окислителя и восстановителя разделены между разными веществами, Fe 2 O 3 и O 2 - окислители, СО и Fe (S ) 2 - восстановители ; такие реакции относят к межмолекулярным окислительно-восстановительным реакциям.

В случае внутримолекулярного окисления-восстановления, когда в одном и том же веществе атомы одного элемента окисляются, а атомы другого элемента восстанавливаются, расчет ведут на одну формульную единицу вещества.

Пример 5. Подберите коэффициенты в уравнении реакции окисления-восстановления

(NH 4) 2 CrO 4 ® Cr 2 O 3 + N 2 +H 2 O + NH 3

Решение

2 (NH 4) 2 CrO 4 = Cr 2 O 3 + N 2 +5 H 2 O + 2 NH 3

Cr VI + 3 e - = Cr III 2

2N - III - 6 e - = N 2 0 1

Для реакций дисмутации (диспропорционирования , самоокисления - самовосстановления), в которых атомы одного и того же элемента в реагенте окисляются и восстанавливаются, дополнительные множители проставляют вначале в правую часть уравнения, а затем находят коэффициент для реагента.

Пример 6 . Подберите коэффициенты в уравнении реакции дисмутации

H 2 O 2 ® H 2 O + O 2

Решение

2 H 2 O 2 = 2 H 2 O + O 2

O - I + e - = O - II 2

2O - I - 2 e - = O 2 0 1

Для реакции конмутации (синпропорционирования ), в которых атомы одного и того же элемента разных реагентов в результате их окисления и восстановления получают одинаковую степень окисления, дополнительные множители проставляют вначале в левую часть уравнения.

Пример 7. Подберите коэффициенты в уравнении реакции конмутации :

H 2 S + SO 2 = S + H 2 O

Решение

2 H 2 S + SO 2 = 3 S + 2H 2 O

S - II - 2 e - = S 0 2

S IV + 4 e - = S 0 1

Для подбора коэффициентов в уравнениях окислительно-восстановительных реакций, протекающих в водном растворе при участии ио нов, используют метод электронно-ионного баланса. Метод подбора коэффициентов с помощью электронно-ионного баланса складывается из следующих этапов:

а) записывают формулы реагентов данной окислительно-восстановительной реакции

K 2 Cr 2 O 7 + H 2 SO 4 + H 2 S

и устанавливают химическую функцию каждого из них (здесь K 2 Cr 2 O 7 - окислитель, H 2 SO 4 - кислотная среда реакции, H 2 S - восстановитель);

б) записывают (на следующей строчке) формулы реагентов в ионном виде, указывая только те ионы (для сильных электролитов), молекулы (для слабых электролитов и газов) и формульные единицы (для твердых веществ), которые примут участие в реакции в качестве окислителя (Cr 2 O 7 2 - ), среды (Н + - точнее, катиона оксония H 3 O + ) и восстановителя (H 2 S ):

Cr 2 O 7 2 - + H + + H 2 S

в) определяют восстановленную формулу окислителя и окисленную форму восстановителя, что должно быть известно или задано (так, здесь дихромат-ион переходит катионы хрома(III ), а сероводород - в серу); эти данные записывают на следующих двух строчках, составляют электронно-ионные уравнения полуреакций восстановления и окисления и подбирают дополнительные множители для уравнений полуреакций :

полуреакция восстановления Cr 2 O 7 2 - + 14 H + + 6 e - = 2 Cr 3+ + 7 H 2 O 1

полуреакция окисления H 2 S - 2 e - = S (т) + 2 H + 3

г) составляют, суммируя уравнения полуреакций , ионное уравнение данной реакции, т.е. дополняют запись (б):

Cr 2 O 7 2 - + 8 H + + 3 H 2 S = 2 Cr 3+ + 7 H 2 O + 3 S ( т )

д ) на основе ионного уравнения составляют молекулярное уравнение данной реакции, т.е. дополняют запись (а), причем формулы катионов и анионов, отсутствующие в ионном уравнении, группируют в формулы дополнительных продуктов (K 2 SO 4 ):

K 2 Cr 2 O 7 + 4H 2 SO 4 + 3H 2 S = Cr 2 (SO 4) 3 + 7H 2 O + 3S ( т ) + K 2 SO 4

е) проводят проверку подобранных коэффициентов по числу атомов элементов в левой и правой частях уравнения (обычно достаточно только проверить число атомов кислорода).

Окисленная и восстановленная формы окислителя и восстановителя часто отличаются по содержанию кислорода (сравните Cr 2 O 7 2 - и Cr 3+ ). Поэтому при составлении уравнений полуреакций методом электронно-ионного баланса в них включают пары Н + / Н 2 О (для кислотной среды) и ОН - / Н 2 О (для щелочной среды). Если при переходе от одной формы к другой исходная форма (обычно - окисленная) теряет свои оксид-ионы (ниже показаны в квадратных скобках), то последние, так как они не существуют в свободном виде, должны быть в кислотной среде соединены с катионами водорода, а в щелочной среде - с молекулами воды, что приводит к образованию молекул воды (в кислотной среде) и гидроксид-ионов (в щелочной среде ):

кислотная среда[ O 2 - ] + 2 H + = H 2 O

щелочная среда[ O 2 - ] + H 2 О = 2 ОН -

Недостаток оксид-ионов в исходной форме (чаще - в восстановленной) по сравнению с конечной формой компенсируется добавлением молекул воды (в кислотной среде) или гидроксид-ионов (в щелочной среде):

кислотная среда H 2 O = [ O 2 - ] + 2 H +

щелочная среда2 ОН - = [ O 2 - ] + H 2 О

Пример 8. Подберите коэффициенты методом электронно-ионного баланса в уравнении окислительно-восстановительной реакции:

® MnSO 4 + H 2 O + Na 2 SO 4 + ¼

Решение

2 KMnO 4 + 3 H 2 SO 4 + 5 Na 2 SO 3 =

2 MnSO 4 + 3 H 2 O + 5 Na 2 SO 4 + + K 2 SO 4

2 MnO 4 - + 6 H + + 5 SO 3 2 - = 2 Mn 2+ + 3 H 2 O + 5 SO 4 2 -

MnO 4 - + 8 H + + 5 e - = Mn 2+ + 4 H 2 O2

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H + 5

Пример 9 . Подберите коэффициенты методом электронно-ионного баланса в уравнении окислительно-восстановительной реакции:

Na 2 SO 3 + KOH + KMnO 4 ® Na 2 SO 4 + H 2 O + K 2 MnO 4

Решение

Na 2 SO 3 + 2 KOH + 2 KMnO 4 = Na 2 SO 4 + H 2 O + 2 K 2 MnO 4

SO 3 2 - + 2 OH - + 2 MnO 4 - = SO 4 2 - + H 2 O + 2 MnO 4 2 -

MnO 4 - + 1 e - = MnO 4 2 - 2

SO 3 2 - + 2 OH - - 2 e - = SO 4 2 - + H 2 О 1

Если перманганат-ион используется в качестве окислителя в слабокислотной среде, то уравнение полуреакции восстановления:

MnO 4 - + 4 H + + 3 e - = Mn О 2( т ) + 2 H 2 O

а если в слабощелочной среде, то

MnO 4 - + 2 H 2 О + 3 e - = Mn О 2( т) + 4 ОН -

Часто слабокислую и слабощелочную среду условно называют нейтральной, при этом в уравнения полуреакций слева вводят только молекулы воды. В этом случае при составлении уравнения следует (после подбора дополнительных множителей) записать дополнительное уравнение, отражающее образование воды из ионов Н + и ОН - .

Пример 10 . Подберите коэффициенты в уравнении реакции, протекающей в нейтральной среде:

KMnO 4 + H 2 О + Na 2 SO 3 ® Mn О 2( т ) + Na 2 SO 4 ¼

Решение

2 KMnO 4 + H 2 О + 3 Na 2 SO 3 = 2 Mn О 2( т ) + 3 Na 2 SO 4 + 2 КОН

MnO 4 - + H 2 О + 3 SO 3 2 - = 2 Mn О 2( т ) + 3 SO 4 2 - + 2 ОН -

MnO 4 - + 2 H 2 О + 3 e - = Mn О 2( т) + 4 ОН -

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H +

8ОН - + 6 Н + = 6 Н 2 О + 2 ОН -

Таким образом, если реакцию из примера 10 проводят простым сливанием водных растворов перманганата калия и сульфита натрия, то она протекает в условно нейтральной (а в действительности, в слабощелочной) среде из-за образования гидроксида калия. Если же раствор перманганата калия немного подкислить, то реакция будет протекать в слабокислотной (условно нейтральной) среде.

Пример 11 . Подберите коэффициенты в уравнении реакции, протекающей в слабокислотной среде:

KMnO 4 + H 2 SO 4 + Na 2 SO 3 ® Mn О 2( т ) + H 2 O + Na 2 SO 4 + ¼

Решение

2KMnO 4 + H 2 SO 4 + 3Na 2 SO 3 = 2MnО 2( т ) + H 2 O + 3Na 2 SO 4 + K 2 SO 4

2 MnO 4 - + 2 H + + 3 SO 3 2 - = 2 Mn О 2( т ) + Н 2 О + 3 SO 4 2 -

MnO 4 - + 4 H + + 3 e - = Mn О 2( т ) + 2 H 2 O2

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H + 3

Формы существования окислителей и восстановителей до и после реакции, т.е. их окисленные и восстановленные формы, называют окислительно-восстановительными парами . Так, из химической практики известно (и это требуется запомнить), что перманганат-ион в кислотной среде образует катион марганца(II ) (пара MnO 4 - + H + / Mn 2+ + H 2 O ), в слабощелочной среде - оксид марганца(IV ) (пара MnO 4 - + H + ¤ Mn О 2(т) + H 2 O или MnO 4 - + H 2 О = Mn О 2(т) + ОН - ). Состав окисленных и восстановленных форм определяется, следовательно, химическими свойствами данного элемента в различных степенях окисления, т.е. неодинаковой устойчивостью конкретных форм в различных средах водного раствора. Все использованные в настоящем разделе окислительно-восстановительные пары приведены в задачах 2.15 и 2.16.

Составление уравнений окислительно-восстановительных реакций

Для того чтобы записать уравнение ОВР, необходимо, прежде всего, знать, какие вещества образуются в результате реакции. В общем случае этот вопрос решается экспериментальным путем. Однако зачастую знание химических особенностей тех или иных окислителей и восстановителей позволяет достаточно надежно (хотя и не со стопроцентной гарантией) предсказать состав продуктов взаимодействия.

Если продукты реакции известны, стехиометрические коэффициенты в уравнении реакции могут быть найдены путем уравнивания числа электронов, присоединяемых атомами окислителя и теряемых атомами восстановителя. Используют два метода подбора коэффициентов в уравнениях ОВР - метод электронного баланса и метод ионно-электронного баланса. Рассмотрим эти приемы.

В основе метода лежит принцип сохранения электрического заряда в процессе химической реакции, в результате чего вещества реагируют в таком соотношении, которое обеспечивает равенство числа электронов, отданных всеми атомами восстановителя и присоединенных всеми атомами окислителя. Для подбора коэффициентов целесообразно использовать следующий алгоритм:

1. Записать схему ОВР (исходные вещества и продукты реакции).

2. Определить элементы, степень окисления которых меняется в процессе реакции.

3. Составить схемы процессов окисления и восстановления.

4. Найти множители, уравнивающие число электронов, присоединенных атомами окислителя и потерянных атомами восстановителя (балансирующие множители). Для этого найти наименьшее общее кратное для электронов, присоединенных одним атомом окислителя и отданных одним атомом восстановителя; балансирующие множители будут равны наименьшему общему кратному, деленному на число присоединенных электронов (для окислителя) и отданных электронов (для восстановителя).

5. Определить и ввести в уравнение коэффициенты при веществах, содержащих элементы, степень окисления которых изменяется (опорные коэффициенты), путем деления балансирующих множителей на число атомов окислителя или восстановителя в формульной единице вещества. Если частное от деления не является целочисленным, балансирующие множители следует увеличить в необходимое число раз.

6. Найти и расставить дополнительные коэффициенты, уравнивающие число атомов, не изменивших степень окисления (кроме водорода и кислорода); при этом, если среда кислая, сначала уравнять атомы металлов, а затем анионы кислот, если среда щелочная или нейтральная - наоборот.

7. Уравнять число атомов водорода, дописывая в случае необходимости воду в правую или левую часть уравнения.

8. Проверить, правильно ли подобраны коэффициенты, по кислороду.



Рассмотрим в качестве примера составление уравнения взаимодействия перманганата калия с сульфатом железа(II) в сернокислой среде по стадиям предложенного алгоритма:

1. KMnO 4 + FeSO 4 + H 2 SO 4 → MnSO 4 + Fe 2 (SO 4) 3 + K 2 SO 4

2. KMn +7 O 4 + Fe +2 SO 4 + H 2 S0 4 → Mn +2 SO 4 + Fe(SO 4) 3 + K 2 SO 4

3. Fe +2 - 1e - = Fe +3 (окисление)

Mn +7 +5e - = Mn +2 (восстановление)

4. Fe +2 - 1e - = Fe +3 │5 │ 10

Mn +7 + 5e - = Mn +2 │1 │2

5. Опорные коэффициенты: при KMnO 4 - 2:1=2, при FeSO 4 - 10:1=10, при MnSO 4 - 2:1=2, при Fe 2 (SO 4) 3 - 10:2=5.

2KMnO 4 + 10FeSO 4 + H 2 SO 4 → 2MnSO 4 + 5Fe 2 (SO 4) 3 + K 2 SO 4

6. Среда кислая, поэтому уравниваем вначале атомы калия, потом - сульфат-ионы.

2KMnO 4 + 10FeSO 4 + 5H 2 SO 4 → 2MnSO 4 + 5Fe 2 (SO 4) 3 + K 2 SO 4

7. Поскольку левая часть уравнения содержит 10 атомов водорода, дописываем в правую часть 5 молекул воды:

2KMnO 4 + 10FeSO 4 + 5H 2 SO 4 = 2MnSO 4 + 5Fe 2 (SO 4) 3 + K 2 SO 4 + 5Н 2 О

8. Число атомов кислорода (не считая кислород, входящий в сульфат-ионы) в правой и левой частях уравнения равно 8. Коэффициенты подобраны правильно.

При протекании ОВР возможны случаи, когда окислитель или восстановитель в частично расходуется на связывание продуктов окисления или восстановления без изменения степени окисления соответствующего элемента. В этом случае коэффициент при веществе с двойной функцией равен сумме опорного и дополнительного коэффициента и вводится в уравнение после того, как будет найден дополнительный коэффициент. Так, реакция между цинком и очень разбавленной азотной кислотой протекает по уравнению

4Zn + 10HNO 3 = 4Zn(NO 3) 2 + NH 4 NO 3 +3H 2 O

Zn 0 - 2e - = Zn +2 │4

N +5 + 8e - = N -3 │1

Как следует из схем окисления-восстановления, на окисление четырех атомов цинка необходима одна молекула азотной кислоты (опорный коэффициент при HNO 3 - 1); однако на образование четырех молекул нитрата цинка и одной молекулы нитрата аммония требуется еще девять молекул HNO 3 , вступающих в реакцию без изменения степени окисления азота (дополнительный коэффициент при HNO 3 - 9). Соответственно коэффициент при азотной кислоте в уравнении реакции будет равен 10, а в правую часть уравнения следует ввести 3 молекулы воды.

Если одно из веществ выполняет одновременно функцию и окислителя, и восстановителя (реакции диспропорционирования) или является продуктом как окисления, так и восстановления (реакции контрдиспропорционирования), то коэффициент при этом веществе равен сумме опорных коэффициентов при окислителе и восстановителе. Например, в уравнении реакции диспропорционирования серы в щелочной среде коэффициент при сере равен трем.

3S 0 + 6NaOH = Na 2 S +4 O 3 + Na 2 S -2 + 3H 2 O

S - 4e - = S +4 │1

S + 2e - = S -2 │2

Иногда при протекании ОВР наблюдается изменение степени окисления более чем двух элементов; в этом случае коэффициенты уравнения могут быть определены однозначно, если все окислители или все восстановители входят в состав одной молекулы. При этом расчет отданных или присоединенных электронов рационально проводить для формульной единицы вещества, содержащего эти окислители или восстановители. В качестве примера рассмотрим взаимодействие сульфида мышьяка(III) с азотной кислотой по стадиям приведенного алгоритма.

1. As 2 S 3 + HNO 3 → H 3 AsO 4 + H 2 SO 4 + NO

2. AsS+ HN +5 O 3 → H 3 As +5 O 4 + H 2 S +6 O 4 + N +2 O

В реакции участвуют два восстановителя (As +3 и S -2) и один окислитель (N +5).

3. N +5 + 3e - = N +2 │28

As 2 S 3 - 28e - = 2As +5 + 3S +6 │ 3

4. Наименьшее общее кратное - 84, балансирующие множители - 28 и 3.

5. 3As 2 S 3 + 28HNO 3 → 6H 3 AsO 4 + 9H 2 SO 4 + 28NO

6. Дополнительных коэффициентов нет.

7. В левую часть уравнения следует ввести молекулы воды:

3As 2 S 3 + 28HNO 3 + 4Н 2 О = 6H 3 AsO 4 + 9H 2 SO 4 + 28NO

8. Число атомов кислорода как в левой, так и в правой части уравнения равно 88. Коэффициенты подобраны правильно.

Если в ОВР участвуют органические вещества, то для них степени окисления не определяют, так как в этом случае каждый атом может иметь свое значение степени окисления, причем зачастую не целочисленное. При составлении схем окисления-восстановления для таких реакций следует руководствоваться следующими правилами:

1. присоединение атома кислорода тождественно потере молекулой двух электронов;

2. потеря атома кислорода тождественна присоединению двух электронов;

3. присоединение атома водорода тождественно присоединению одного электрона;

4. потеря атома водорода тождественна потере одного электрона.

Ниже в качестве примера приведено уравнение реакции окисления этилового спирта дихроматом калия:

3C 2 H 5 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 COOH + 2Cr 2 (SO 4) 3 + 2K 2 SO 4 + 11H 2 O

C 2 H 5 OH + [O] - 2[H] - 4e - = 3CH 3 COOH │3

Cr +6 + 3e - = Cr +3 │4

Превращение этилового спирта в уксусную кислоту требует присоединения атома кислорода и потери двух атомов водорода, чему соответствует потеря четырех электронов.

Метод электронного баланса является универсальным методом, применимым к любым ОВР, протекающим в газовой фазе, конденсированных системах и в растворах. Недостатком метода является то, что прием этот формален и оперирует с не существующими реально частицами (Mn +7 , N +5 и т. д.).