Тест теория очередей и ее элементы. Смотреть страницы где упоминается термин теория очередей. Использование очередей отложенных действий

  • 25.01.2024

Каждый из нас не раз в своей жизни стоял в очередях и знает, как много времени это отнимает.

Многие модели, призванные решить или оптимизировать эту проблему, требуют сложных математических формулировок .

Очередь - это линия ожидания . Теория очередей - часть более широкой теории, в рамках которой проводятся оперативные исследования и создаются математические модели. Все это делается с одной целью - решить проблемы, которые создает стояние в очередях. Здесь важно найти компромиссный вариант, учитывающий систему расходов и среднее время ожидания в очереди. анализировать телефонную систему в Копенгагене, чтобы разрешить проблему загруженности телефонных линий.

Первопроходцем в теории очередей был датский математик Агнер Краруп (1878-1929), взявшийся
анализировать телефонную систему в Копенгагене, чтобы разрешить проблему загруженности телефонных линий.

В теории изучения очередей существуют законы Харпера , подобные знаменитым законам Мерфи.

  • Первый закон Харпера : неважно, в какую очередь ты становишься - всегда есть одна, движущаяся быстрее остальных.
  • Второй закон Харпера : если ты переходишь в другую очередь, та, которую ты покинул, начинает двигаться быстрее.

Проблема очередей

Современный человек проводит в ожидании более или менее значительную часть своей жизни. Разве есть среди нас те, кто никогда не стоял в очереди? Мир ожидания очень разнообразен: очереди машин на въезде на платную дорогу, очереди самолетов на выезде на взлетную полосу и, как следствие, очереди пассажиров к стойкам регистрации; очередь к банкоматам в больших зданиях, очередь на прием к врачу или очередь телефонных звонков, которые должны быть обработаны на пожарной станции… Это лишь некоторые примеры. пытается создать модели, поддающиеся последующей математической обработке.

Модели очередей

Некоторые модели очередей очень просты, другие требуют применения сложных математических теорий. Первичная классификация разбивает их на две большие группы.

Детерминированная очередь - наиболее простая модель, которую можно заранее спрогнозировать, опираясь на известные условия, например, временные интервалы прибытия и ожидания. Это «очередь без сюрпризов».

Вероятностная очередь не может быть описана без применения вероятностей. Это более реалистичная модель, чем предыдущая. В дождливый день, например, есть большая вероятность того, что увеличатся очереди на стоянках такси и уменьшатся очереди в кассы зоопарка.

Этот метод, предложенный Данцигом, Кестеном и Ранненбергом (метод коллективных меток - method of collective marks) и развитый затем Г.П. Климовым (метод «катастроф»), позволяет легко получить аналитические результаты в ситуациях, когда другие известные методы приводят к трудоемким выкладкам. Особенно эффективен он оказался при анализе ненадежных и приоритетных систем массового обслуживания.

Сущность этого метода заключается в следующем. Пусть требуется найти некоторое распределение, характеризующее функционирование СМО. Производящей функции этого распределения (если распределение дискретное) или его преобразованию Лапласа - Стилтьеса придается вероятностный смысл за счет «раскрашивания» запросов или введения в рассмотрение потока «катастроф». Затем вводится в рассмотрение некоторое (дополнительное) случайное событие и вероятность его подсчитывается в терминах производящей функции или преобразованию Лапласа - Стилтьеса искомого распределения двумя различными способами. В результате получается уравнение, решением которого является функция, которая интересует исследователя.

Проиллюстрируем этот метод, применив его для нахождения вероятностных характеристик системы M\G\1. Важной характеристикой производительности многих реальных систем является распределение периода занятости системы. Период занятости есть интервал времени с момента поступления запроса в пустую систему до момента, когда система впервые вновь окажется пустой. Знание периода занятости позволяет решать задачи, связанные, например, с планированием проведения в системе профилактических работ, исследованием возможности дополнительной загрузки прибора выполнением некоторой второстепенной «фоновой» работы и т.д.

Обозначим функцию стационарного распределения длины периода занятости в рассматриваемой системе, -ее преобразование Лапласа - Стилтьеса.

Считаем, что выполняется условие:

гарантирующее существование стационарного распределения длины периода занятости рассматриваемой СМО.

Утверждение 13.

Преобразование Лапласа - Стилтьеса распределения длины периода занятости рассматриваемой СМО удовлетворяет следующему функциональному уравнению:

Доказательство. Легко видеть, что распределение длины периода занятости системы не зависит от того, в каком порядке обслуживаются запросы. Для облегчения анализа структуры периода занятости предположим, что запросы обслуживаются в инверсионном порядке, то есть на обслуживание всегда выбирается запрос, пришедший в систему последним. Такая дисциплина выбора из очереди кодируется как LIFO (Last In - First Out) или LCFS (Last Came - First Served). При такой дисциплине выбора из очереди каждый запрос как бы порождает период занятости системы запросами, пришедшими в систему после него. Причем структура и, следовательно, распределение длины периода занятости, порожденного некоторым запросом, такие же, как структура и распределение длины периода занятости системы. Используя эти рассуждения, мы приходим к пониманию того, что период занятости системы состоит из времени обслуживания первого запроса, с которого начался период занятости, и случайного числа периодов занятости, порожденных запросами, пришедшими в систему за время обслуживания первого запроса.

Теперь предположим, что независимо от функционирования данной системы поступает простейший поток катастроф интенсивности s. Введем в рассмотрение (дополнительное) событие А, состоящее в том, что за данный период занятости не поступили катастрофы.

Напомним, что согласно вероятностной трактовке преобразования Лапласа - Стилтьеса, величина есть вероятность того, что не произойдет ни одной катастрофы за случайное время, имеющее функцию распределения H(t). Поэтому легко понять, что вероятность события А определяется следующим образом:

Найдем теперь вероятность этого же события иначе. Назовем произвольный запрос «плохим», если за период занятости, порожденный им, наступает катастрофа. Используя достигнутое нами понимание структуры периода занятости, нетрудно убедиться, что для того, чтобы запрос, с которого начался период занятости, был неплохим (вероятность этого есть Р(А)), необходимо и достаточно, чтобы за время его обслуживания не поступили события из суммарного потока катастроф и потока плохих запросов.

Поток катастроф является простейшим потока интенсивности s. Поток плохих запросов получается из исходного простейшего потока интенсивности в результате применения простейшей процедуры рекуррентного просеивания (произвольный запрос включается в просеянный поток с вероятностью независимо от других запросов). Поэтому, согласно Утверждению 6, просеянный поток является простейшим потоком интенсивности Согласно Утверждению 5, суммарный поток катастроф и плохих запросов является простейшим потоком интенсивности

Таким образом, используя еще раз вероятностную трактовку преобразования Лапласа - Стилтьеса мы получаем следующую формулу для вероятности события :

Сравнивая выражения (1.83) и (1.84), мы убеждаемся в справедливости формулы (1.82). Утверждение 13 доказано.

Уравнение (1.82), полученное Дж. Кендаллом в 1951 году, имеет единственное решение в области Res > 0, такое, что

В случае, если распределение времени обслуживания показательное, рассматриваемая система есть М|М|1 и преобразование Лапласа - Стилтьеса распределения времени обслуживания имеет вид: При этом функциональное уравнение (1.82) переходит в квадратное уравнение для неизвестного преобразования Лапласа - Стилтьеса

Решая уравнение (1.85), получаем:

В этой формуле выбираем только знак чтобы полученное решение удовлетворяло условию Обращая теперь преобразование Лапласа - Стилтьеса получаем следующее выражение для производной функции распределения длины периода занятости системы М|М|1:

где функция есть модифицированная функция Бесселя первого рода.

В общем случае уравнение (1.82) можно решать методом итераций, снабдив функцию индексом в левой части уравнения и индексом в правой части. Эта процедура имеет геометрическую скорость сходимости последовательности к значению при фиксированном значении аргумента

Кроме того, путем последовательного дифференцирования уравнения (1.82) с последующей подстановкой аргумента и учета свойства 5 преобразования Лапласа - Стилтьеса, можно получить рекуррентную последовательность формул для вычисления начальных моментов распределения длины периода занятости. Так, среднее значение длины периода занятости и второй начальный момент ее распределения определяются формулой:

Как и следовало ожидать, с ростом коэффициента загрузки и приближением его значения к единице среднее значение периода занятости стремится к бесконечности.

Рассмотрим теперь другую характеристику функционирования системы M\G\1 - число запросов, обслуженных за период занятости. Обозначим

Утверждение 14. Производящая функция удовлетворяет следующему функциональному уравнению:

Доказательство. Производящей функции придадим вероятностный смысл следующим образом. Каждый из запросов независимо от других назовем красным с вероятностью z и синим с дополнительной вероятностью. Произвольный запрос назовем темнокрасным, если он сам красный и за период занятости, порожденный им, в системе обслуживались только красные запросы. Введем событие А, состоящее в том, что запрос, с которого начинается период занятости, является темно-красным. Найдем вероятность этого события. С одной стороны, очевидно, что

С другой стороны, из проделанного выше анализа структуры периода занятости ясно, что для того, чтобы запрос был темно-красным, необходимо и достаточно, чтобы он сам был красным (вероятность этого равна z) и за время его обслуживания могли поступать только темно-красные запросы.

Так как поток запросов - простейший с параметром , а произвольный запрос является темно-красным с вероятностью , то поток нетемно-красных вызовов (как это следует из Утверждения 6) является простейшим с параметром Вспоминая вероятностную интерпретацию преобразования Лапласа - Стилтьеса, из приведенных рассуждений выводим следующую альтернативную формулу для вероятности события

Сравнивая формулы (1.90) и (1.91), убеждаемся в справедливости (1.89). Утверждение 14 доказано.

Уравнение (1.89) определяет единственную аналитическую в области функцию, такую, что

Следствие. Среднее число запросов, обслуженных в системе M\G\1 за один период занятости, задается формулой:

Приведем еще одно доказательство формулы Поллячека-Хинчина для производящей функции распределения вероятностей числа запросов в системе M\G\1 в моменты окончания обслуживания. Каждый из запросов, приходящих в систему, независимо от других назовем красным с вероятностью 2 и синим с дополнительной вероятностью. Введем событие А, состоящее в том что запрос, уходящий в данный момент окончания обслуживания из системы, сам красный и все запросы, остающиеся в системе в этот момент, тоже красные.

Из вероятностной интерпретации производящей функции очевидно следует, что:

где есть искомая производящая функция распределения вероятностей числа запросов в системе в моменты окончания обслуживания.

С другой стороны, для того, чтобы произошло событие А, необходимо и достаточно, чтобы все запросы, которые находились в системе в предыдущий момент окончания обслуживания (если система была непуста), были красными и за время обслуживания не пришли синие запросы, а если система была пуста, то первый пришедший запрос должен быть красным и за время его обслуживания не пришли синие запросы.

Из этих рассуждений следует, что:

Из соотношений этого соотношения и (1.92) очевидным образом следует формула Поллячека - Хинчина:

полученная нами ранее с помощью метода вложенных цепей Маркова.

В заключение подраздела найдем характеристики системы M\G\1 с дисциплиной LIFO.

Выше отмечалось, что распределение периода занятости системы M|G|1 не зависит от дисциплины обслуживания. Поэтому уравнение (1.82) определяет преобразование Лапласа - Стилтьеса распределения периода занятости для всех дисциплин. Кроме того, несложно видеть, что и распределения числа запросов в системе M\G\1 при дисциплинах FIFO и LIFO совпадают и задаются формулой (1.81).

Распределение времени ожидания запроса при дисциплинах FIFO и LIFO различно. При дисциплине FIFO преобразование Лапласа - Стилтьеса стационарного распределения времени ожидания задается формулой (1.52).

Утверждение 15. При дисциплине LIFO преобразование Лапласа - Стилтьеса имеет следующий вид:

где функция является решением уравнения (1.82).

Доказательство. Введем поток катастроф и понятие «плохого» запроса, как это было сделано при доказательстве Утверждения 13. При этом функция есть вероятность того, что за время ожидания данного запроса не наступит катастрофа, а функция есть вероятность того, что произвольный запрос не является «плохим», то есть катастрофа не наступает за период занятости, порожденный этим запросом.

Учитывая сущность дисциплины LIFO и рассуждения, использованные при доказательстве Утверждения 13, получаем формулу:

где есть преобразование Лапласа - Стилтьеса распределения остаточного (после момента поступления запроса, время ожидания которого мы исследуем) времени обслуживания запроса, находящегося на приборе.

Очереди и управление ими – один из важнейших аспектов операционного менеджмента. Знать, как обращаться с ними, необходимо при составлении графиков, проектировании операций, планировании товарно-материальных запасов и т.д.

Существование очередей – это нормальное состояние произв. системы; ими довольно эффективно можно управлять с помощью средств системного менеджмента и проектирования.

Хар-ки входящих потоков:

1) вид входящего потока (управляемый, неуправляемый);

2) размер единицы входящего потока заявок: (одиночная заявка, групповая заявка);

3) распределение входящего потока (равномерное, экспоненциальное или пуассоновское, другое);

Очередь очередь очереди и ушел).

Параметры очередей:

1) длина очереди (бесконечная, ограниченная пропускной способностью);

2) кол-во очередей (однолинейная, многолинейная);

3) дисциплина очереди (первым прибыл, первым обслужен; первоочередное обслуживание клиентов с наименьшим временем обслуживания; первоочередное обслуживание по предварит. заказам; первоочередное обслуживание в случае крайней необходимости; ограничение потребностью; другая дисциплина).

Структура очередей:

1. Одноканальная (однофазовая, многофазовая);

2. Многоканальная (однофазовая, многофазовая);

3. Комбинированная:

Структура с переходом многоканального обслуживания в одноканальное (однофазовая, многофазовая),

Структура альтернативного пути.

Сценарии выхода из системы клиента:

1) возвращается в исходную генеральную совокупность;

2) низкая вероятность повторного обслуживания.


  • 4) уровень терпеливости клиентов (терпеливый - стал в очередь и ждет, нетерпеливый - прибыл, осмотрел очередь и ушел; прибыл, немного постоял в очереди и ушел). Параметры очередей


  • 4) уровень терпеливости клиентов (терпеливый - стал в очередь и ждет, нетерпеливый - прибыл, осмотрел очередь и ушел; прибыл, немного постоял в очереди и ушел). Параметры очередей


  • Сущность теории очередей , основные понятия .
    основных


  • Сущность теории очередей , основные понятия .
    Это документ, в соответствии с которым происходит разбиение общего объема на совокупность основных пакетов работ, подлежащих выполнению.


  • Сущность теории очередей , основные понятия . Очереди


  • Сущность теории очередей , основные понятия . Очереди и управление ими – один из важнейших аспектов операционного менеджмента. Знать, как о. Стратегии преодоления проблем, которые обусловленные неоднородностью спроса.


  • Сущность теории очередей , основные понятия . Очереди


  • Сущность теории очередей , основные понятия . Очереди и управление ими – один из важнейших аспектов операционного менеджмента. Знать, как обращат... подробнее ».


  • Понятие , сущность , основные
    теории основные разновидности, или направления.


  • Многочисленные демократические теории условно можно подразделить на три основные разновидност. Понятие , сущность , основные признаки политического режима демократии.

Найдено похожих страниц:10


Очередей теория

раздел массового обслуживания теории (См. Массового обслуживания теория). О. т. изучает системы, в которых требования, застающие систему занятой, не теряются, а ожидают её освобождения и затем обслуживаются в том или ином порядке (часто с предоставлением приоритета определённым категориям требований). Выводы О. т. используют для рационального планирования систем массового обслуживания. С математической точки зрения задачи О. т. могут быть включены в теорию случайных процессов (См. Случайный процесс), а ответы часто бывают выражены в терминах Лапласа преобразований (См. Лапласа преобразование) искомых характеристик. Применение методов О. т. необходимо даже в простейших случаях для правильного понимания статистических закономерностей, возникающих в системах массового обслуживания.

Пример. Пусть имеется один обслуживающий прибор, на который поступает случайный поток требований. Если в момент поступления требования прибор свободен, то оно сразу начинает обслуживаться. В противном случае оно становится в очередь и прибор обслуживает требования одно за другим в порядке их поступления. Пусть а - среднее число требований, поступающих за время одного обслуживания, а Т - длительность периода занятости, то есть промежутка времени от момента занятия прибора каким-либо требованием, заставшим прибор свободным, до первого момента полного освобождения прибора. О. т. показывает, что при естественных допущениях математическое ожидание Т равно m = 1/(1 - а), а дисперсия равна (1 + a ) m 3 (так, при а = 0,8 соответствующие значения равны 5 и 225). Таким образом, для «хорошо загруженного» обслуживающего прибора (то есть при а, близких к 1) среднее значение m случайной величины Т является весьма ненадёжной характеристикой Т.

Лит.: Гнеденко Б. В., Коваленко И. Н., Введение в теорию массового обслуживания, М., 1966; Приоритетные системы обслуживания, М., 1973.

Ю. В. Прохоров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

  • Очанка
  • Очередные задачи советской власти

Смотреть что такое "Очередей теория" в других словарях:

    ОЧЕРЕДЕЙ ТЕОРИЯ - в математике раздел теории массового обслуживания, где изучаются системы, в которых требования, застающие систему занятой, не теряются, а ожидают ее освобождения и затем обслуживаются в том или ином порядке … Большой Энциклопедический словарь

    очередей теория - (матем.), раздел теории массового обслуживания, где изучаются системы, в которых требования, застающие систему занятой, не теряются, а ожидают её освобождения и затем обслуживаются в том или ином порядке. * * * ОЧЕРЕДЕЙ ТЕОРИЯ ОЧЕРЕДЕЙ ТЕОРИЯ, в… … Энциклопедический словарь

    ОЧЕРЕДЕЙ ТЕОРИЯ - см. Массового обслуживания теория … Большой энциклопедический политехнический словарь

    ОЧЕРЕДЕЙ ТЕОРИЯ - раздел массового обслуживания теории. О. т. изучает системы, в к рых требования, застающие систему занятой, не теряются, а ожидают ее освобождения и затем обслуживаются в том или ином порядке (часто с предоставлением приоритета определенным… … Математическая энциклопедия

    ОЧЕРЕДЕЙ ТЕОРИЯ - (матем.), раздел теории массового обслуживания, где изучаются системы, в к рых требования, застающие систему занятой, не теряются, а ожидают её освобождения и затем обслуживаются в том или ином порядке … Естествознание. Энциклопедический словарь

    Теория массового обслуживания - (теория очередей) раздел теории вероятностей, целью исследований которого является рациональный выбор структуры системы обслуживания и процесса обслуживания на основе изучения потоков требований на обслуживание, поступающих в систему и выходящие… … Википедия

    теория массового обслуживания - — теория массового обслуживания Раздел исследования операций, который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других… … Справочник технического переводчика

    Теория массового обслуживания

    Теория массового обслуживания - раздел исследования операций, который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других областях как процессы обслуживания, т.е. удовлетворения каких… … Экономико-математический словарь

    Теория очередей - см. Теория массового обслуживания … Экономико-математический словарь

Книги

  • Логистика и теория очередей
  • Логистика и теория очередей , Рыжиков Ю.И.. В учебном пособии рассматривается современное состояние теории логистики, обсуждаются элементы математической модели управления запасами и основы численных методов теории очередей;…

1. Предмет и задачи В производственной деятельности и повседневной жизни часто возникают ситуации, когда появляется необходимость в обслуживании требований или заявок поступающих в систему. Часто встречаются ситуации, в которых необходимо пребывать в ситуации ожидания. Примерами тому может служить очередь покупателей у касс большого магазина, группа пассажирских самолетов, ожидающих разрешения на взлет в аэропорте, ряд вышедших из строя станков и механизмов, поставленных в очередь для починки в ремонтном цехе предприятия и т.д. Иногда системы обслуживания обладают ограниченными возможностями для удовлетворения спроса, и это приводит к образованию очередей. Как правило, ни время возникновения потребностей в обслуживании, ни продолжительность обслуживания заранее не известны. Избежать ситуации ожидания чаще всего не удается, но можно сократить время ожидания до какого-то терпимого предела.

Предметом теории массового обслуживания являются системы массового обслуживания (СМО).Задачами теории массового обслуживания являются анализ и исследование явлений, возникающих в системах обслуживания.Одна из основных задач теории заключается в определении таких характеристик системы, которые обеспечивают заданное качество функционирования, например, минимум времени ожидания, минимум средней длины очереди.Цель изучения режима функционирования обслуживающей системы в условиях, когда фактор случайности является существенным,контролировать некоторыеколичественные показатели функционирования системы массового обслуживания. Такими показателями, в частности являются среднее время пребывания клиента в очереди или доля времени, в течение которой обслуживающая система простаивает. При этом в первом случае мы оцениваем систему с позиции «клиента», тогда как во втором случае мы оцениваем степень загруженности обслуживающей системы. Путем варьирования операционными характеристиками обслуживающей системы может быть достигнут разумныйкомпромисс между требованиями «клиентов» и мощностью обслуживающей системы.

В качестве показателей СМО могут применяться также такие величины как среднее число заявок в очереди, вероятность того, что число заявок в очереди превысит какое-то значение и т.д.

Система - совокупность элементов, связей между ними и цели функционирования. Любой системе массового обслуживания характерна структура, которая определяется составом элементов и функциональными связями.

Основные элементы системы следующие:

1. Входящий поток требований (интенсивность входящего потока );

2. Каналы обслуживания (число каналов n , среднее число занятыхk , производительность);

3. Очередь требований (среднее число заявок z , среднее время пребывания одной заявкиt );

4. Выходящий поток требований (интенсивность входящего потока ).

2. Классификация систем массового обслуживания По количеству каналов СМО подразделяют наодноканальные имногоканальные . По месту нахождения источников заявок системы массового обслуживания можно разделить на:

 закрытые – источник в системе и оказывает на нее влияние;

 открытые – вне системы и не оказывает влияния.

По фазам обслуживания СМО можно разделить на:

 однофазные – один этап обслуживания,

 многофазные – два и более этапов.

Системы массового обслуживания (СМО) по условиям ожидания делятся на два основных класса: СМО с отказами и СМО с ожиданием . В СМО с отказами заявка, поступающая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (пример - звонок по телефону). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной илинеограниченной длиной ожидания ,с ограниченным временем ожидания и т.д.

Для классификации СМО важное значение имеет дисциплина обслуживания, определяющая порядок выбора заявок из числа поступивших и порядок распределения их между свободными каналами.Дисциплина обслуживания – правила, по которым действуют СМО. По этому признаку обслуживание требования может быть организованно:

1. по принципу «первый пришел – первый обслужен»;

2. по принципу «первый пришел – последним обслужен» (например, отгрузка однородной продукции со склада).

3. случайно;

4. с приоритетом. При этом приоритет может быть абсолютным (более важная заявка вытесняет обычную) иотносительным (важная заявка получает лишь «лучшее» место в очереди).

При анализе случайных процессов с дискретным состояниями удобно пользоваться геометрической схемой – так называемымграфом состояний .

Пример . УстройствоS состоит из двух узлов,

каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время. Возможные состояния системы: S 0 – оба узла исправны;S 1 – первый узел ремонтируется, второй исправен;S 2 – первый узел исправен, второй ремонтируется;S 3 – оба узла ремонтируются.

3. Входящий поток требований Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений . Количество требований на обслуживание, временные интервалы между их поступлениями и длительность обслуживания случайны.Поэтому основным аппаратом описания систем обслуживания оказывается аппарат теории случайных процессов, в частности, марковских. Для исследования процессов, происходящих в этих системах, применяются методы имитационного моделирования.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-либо событий (появление новой заявки, приоритета обслуживания, окончания обслуживания).

Под случайным (стохастическим, вероятностным) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностным законом. Заявки на обслуживание в СМО обычно поступают не регулярно (например, поток вызовов на телефонной станции, поток отказов компьютеров, поток покупателей и т.д.), образуя так называемыйпоток заявок (или требований).

Поток характеризуетсяинтенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называетсярегулярным , если события следуют одно за другим через определенные равные промежутки времени (поток изделий на конвейере сборочного цеха).

Поток событий называетсястационарным , если его вероятностные характеристики не зависят от времени. В частности у стационарного потока λ(i )= λ (поток автомобилей на проспекте в часы пик).

Поток событий называетсяпотоком без последствий , если для любых два непересекающихся участков времени –τ 1 иτ 2 – число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие(поток людей, входящих в метро или поток покупателей, отходящих от кассы).

Поток событийординарен , если события появляются в нем поодиночке, а не группами(поток поездов – ординарен, поток вагонов – нет).

Поток событий называетсяпростейшим , если он одновременно стационарен, ординарен и не имеет последствий.

Ординарный поток заявок без последствий описывается распределением (законом) Пуассона.

Простейший поток в теории массового обслуживания играет такую же роль, как и нормальный закон в теории вероятностей. Главная его особенность заключается в том, что при сложении нескольких независимых простейших потоков образуется суммарный поток, который также близок к простейшему.

Каждому событию соответствует момент t , в который это событие произошло. Т – интервал между двумя моментами времени. Поток событий – независимая последовательность моментов t .

Для простейшего потока с интенсивностью λ вероятность попадания на элементарный (малый) отрезок времени Δt хотя бы одного события потока равна.

Ординарный поток заявок без последствий описывается распределением (законом) Пуассона с параметром λτ :

, (1)

для которого математическое ожидание случайной величины равно ее дисперсии:
.

В частности, вероятность того, что за время τ не произойдет ни одного события (m =0), равна

. (2)

Пример. На автоматическую телефонную линию поступает простейший поток вызовов с интенсивностью λ =1,2 вызовов в минуту. Найти вероятность того, что за две минуты: а) не придет ни одного вызова; б) придет ровно один вызов; в) придет хотя бы один вызов.

Решение. а) Случайная величина Х – число вызовов за две минуты – распределена по закону Пуассона с параметром λτ =1,2·2=2,4. Вероятность того, что вызовов не будет (m =0), по формуле (2):

б) Вероятность одного вызова (m =1):

в) Вероятность хотя бы одного вызова:

4. Предельные вероятности состояний Если число состояний системы конечно и из каждого из них можно за конечное число шагов перейти в любое другое состояние, то предельные вероятности существуют.

Рассмотрим математическое описание Марковского процесса с дискретными состояниями и непрерывным временем на примере процесса, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния S i в S j происходят под воздействием простейших потоков событий с интенсивностями состояний λ ij (i , j =0,.1,2,3).

Так как переход системы из состояния S 0 в S 1 будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния S 1 в S 0 – под воздействием потока и событий, связанных с окончанием ремонтов первого узла и т.д.

Граф состояний системы с проставленными у стрелок интенсивностями будем называтьразмеченным . Рассматриваемая система имеет четыре возможных состояния:S 0 ,S 1 ,S 2 ,S 3 . Назовем вероятностьюi -го состояния вероятностьp i (t ) того, что в моментt система будет находиться в состоянииS i . Очевидно, что для любого моментаt сумма вероятностей всех состояний равна единице:
.

Предельная вероятность состояния S i имеет – показывает среднее относительное время пребывания системы в этом состоянии(если предельная вероятность состояния S 0 , т.е. p 0 =0,5, то это означает, что в среднем половину времени система находится в состоянии S 0 ).

Для системыS с графом состояний, изображенном на рис. система линейных алгебраических уравнений, описывающих стационарный режим, имеет вид (также называется системойуравнений Колмогорова ):

(3)

Данная система может быть получена по размеченному графу состояний, руководствуясь правилом , согласнокоторому в левой части уравнений стоит предельная вероятность данного состояния p i , умноженная на суммарную интенсивность всех потоков, выходящих из i -го состояния, равная сумме произведений интенсивности всех потоков, входящих из i -е состояние на вероятности тех состояний, из которых эти потоки исходят.

Пример . Найти предельные вероятности для системы, граф состояний которого изображен на рис. выше. при λ 01 =1, λ 02 =2, λ 10 =2, λ 13 =2, λ 20 =3, λ 23 =1, λ 31 =3, λ 32 =2 .

Система алгебраических уравнений для этого случая согласно (3) имеет вид:

Решив линейную систему уравнений, получим p 0 = 0,4, p 1 = 0,2, p 2 = 0,27, p 3 = 0,13; т.е. в предельном стационарном режиме система S в среднем 40% времени будет находиться в состоянии S 0 (оба узла исправны), 13% в состоянии S 1 (первый узел ремонтируется, второй работает), 27% - в состоянии S 2 (второй узел ремонтируется, первый работает) и 13% в состоянии S 3 (оба узла ремонтируются).

Определим чистый доход от эксплуатации в стационарном режиме рассмотренной системы S в условиях, что в единицу времени исправная работа узла один и узла два приносит доход соответственно 10 и 6 денежных единиц, а их ремонт требует соответственно затрат 4 и 2 денежных единицы. Оценим экономическую эффективность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).

Для решения этой задачи с учетом полученных значений p 0 , p 1 , p 2 , p 3 определим долю времени исправной работы первого узла, т.е. p 0 + p 2 = 0,4+0,27 = 0,67 и долю времени исправной работы второго узла p 0 + p 1 = 0,4+0,2 = 0,6. В то же время первый узел находится в ремонте в среднем долю времени равную p 1 + p 3 = 0,2+0,13 = 0,33, а второй узел p 2 + p 3 = 0,27+0,13 = 0,40. Поэтому средний чистый доход в единицу времени от эксплуатации системы равен Д =0,67·10+0,6·6–0,33·4–0,4·2=8,18 ден.ед. уменьшение вдвое среднего времени ремонта каждого узла будет означать увеличение вдвое интенсивностей потока «окончания ремонтов» каждого узла, т.е. теперь λ 10 =4, λ 20 =6, λ 31 =6, λ 32 =4 и система уравнений, описывающая стационарный режим системы S , будет иметь вид:

.

Решив систему получим p 0 = 0,6, p 1 = 0,15, p 2 = 0,2, p 3 = 0,05. Учитывая, что p 0 + p 2 = 0,6+0,2 = 0,8,

p 0 + p 1 = 0,6+0,15 = 0,75, p 1 + p 3 = 0,15+0,05 = 0,2, p 2 + p 3 = 0,2+0,05 = 0,25, а затраты на ремонт первого и второго узла составляют соответственно 8 и 4 ден.ед., вычислим чистый средний доход в единицу времени: Д1 =0,8·10+0,75·6–0,2·8–0,25·4=9,99 ден.ед.

Так как Д1 больше Д (примерно на 20%), то экономическая целесообразность ускорения ремонта узлов очевидна.

5. Процесс размножения и гибели Рассматриваемый в СМО процесс размножения и гибели характеризуется тем, что если все состояния системы пронумероватьS 1 ,S 2 ,,S n то из состоянияS k (k < n ) можно попасть либо в состояниеS k -1 , либо в состояниеS k +1 .

Для предельных вероятностей характерна следующая система уравнений:

(4)

к которой добавляется условие:

Из этой системы можно найти предельные вероятности. Получим:

, (6)

,
, …,
. (7)

Пример. Процесс гибели и размножения представлен графом. (рис).

Найти предельные вероятности состояний.

Решение. По формуле (6) найдем
,

по (7)
,
,

т.е. в установившемся стационарном режиме в среднем 70,6% времени система будет находиться в состоянии S 0 , 17,6% – в состоянии S 1 и 11,8% – в состоянии S 2 .

6. Системы с отказами В качестве показателей эффективности СМО с отказами будем рассматривать:

А – абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени,

Q – относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;

– вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;

– среднее число занятых каналов (для многоканальной системы).