Система очистки почвы от тяжелых металлов. Способ очистки загрязненных почв от тяжелых металлов. Химические методы очистки почвы

  • 03.04.2020

Использование новых методов очистки урбанизированных почв от тяжёлых металлов

В.И. Савич, д.с.-х.н, профессор, С.Л. Белопухов, д.с.-х.н., профессор, Д.Н. Никиточкин, к.с.-х.н., Российский ГАУ - МСХА им. К.А. Тимирязева; А.В. Филиппова, д.б.н, профессор, Оренбургский ГАУ

Загрязнение городских почв снижает качество жизни населения, так как пылевые частицы, разносимые ветром, попадают в организм человека, приводя к проблемам со здоровьем. Фильтрация загрязняющих веществ, или их кумуляция, зависит от свойств почвы и насыщенности её загрязнителями. Вопросы очистки городских почв обсуждались научным сообществом, были предложены мероприятия по периодической смене урбанизированных почв, по использованию микропрепаратов, связывающих тяжёлые металлы, и т.д. Следует отметить, что любые исследования, позволяющие улучшить качество городских почв, имеют место быть.

Биологическая очистка городских почв от тяжёлых металлов имеет свои особенности. Очистка городских почв от тяжёлых металлов может быть проведена за счёт отчуждения их из грунта зелёными растениями. При этом для более усиленного развития процесса необходим подбор условий выращивания и видов растений. Разные растения имеют неодинаковую устойчивость к определённым видам загрязнения, что определяется особенностями протекающих в них процессов метаболизма . Так, по данным Е.М. Ивановой с соавторами , при сравнении устойчивости к сульфату меди трёх трав - хрустальной травки, клевера лугового и рапса - наибольшую устойчивость проявил клевер. При этом токсичность меди для растений в значительной степени определялась её способностью связываться с БН-группами белков и легко изменять своё окислительно-восстановительное состояние, генерируя активные формы кислорода и вызывая состояние окислительного стресса .

Цель и методика исследований. При изучении возможностей фиторемидиации были проведены опыты по изучению возможностей выноса тяжёлых металлов растениями.

В опыте №1 целью исследования являлось выявление влияния состава грунта на развитие растений, выращиваемых на нём, вынос тех или иных элементов ^п, Fe, Мп, Mg) с растениями, оценка растений, максимально накапливающих и минимально накапливающих различные микроэлементы. В качестве составляющих исследуемых грунтов были кварцевый песок, торф, цеолит, пропитанный раствором NPK, дерново-подзолистая почва (взятая в лесопарке г. Москвы), почва, загрязнённая различными токсикантами (взятая с обочины дороги). На полученных грунтах выращивали растения кресс-салата, редиса, мятлика лугового и овсяницы

красной в течение 1-1,5 месяца. Затем проводили анализ полученных проростков, используя данные химического анализа (содержание элементов марганца, цинка, магния, железа), а также данные по длине стеблей и корней выращенных проростков (величины рН исследуемых грунтов колебались от 6,4 до 7,1).

Результаты исследования. Максимальное развитие стеблей отмечалось в варианте с содержанием 10 г цеолита, 30 г торфа, 30 г песка и 30 г загрязнённой почвы. Варианты, наиболее благоприятные для формирования массы, длины стеблей и корней, отличаются. Это, видимо, связано как с наличием по вариантам разных ростовых веществ, так и с формированием совокупности физико-химических, водно-физических, структурно-химических свойств почв, благоприятных для разных отдельных процессов.

Наилучшее развитие растений по их массе отмечалось в варианте с содержанием 25 г торфа, 25 г цеолита, 25 г песка и 25 г загрязнённой почвы. В то же время оптимум для развития разных растений отмечается на разных грунтах.

Вынос цинка из почв за счёт биологической мелиорации приведён в таблице 1.

Вынос цинка из почв зависит от состава грунта и выращиваемых растений. Больше вынос был у той культуры, у которой выше вегетативная масса. Очевидно, подкормка растений элементами питания будет способствовать увеличению выноса тяжёлых металлов растениями. В то же время наибольший вынос мг цинка на 1 растение показали овсяница и мятлик. Вынос цинка в грунтах с добавлением торфа составлял 46,5+13,4 мг/сосуд, а в грунтах без торфа - 38,4+14,0.

Максимальный вынос цинка из загрязнённых почв (мг/сосуд) осуществлял редис, минимальный - салат (табл. 2).

1. Вынос цинка из почв отдельными культурами (п = 8)

Культура Вынос цинка

мг/сосуд 100 мг/г растения 100

Кресс-салат 16,5±4,7 50,0

Редис 109,2±28,7 67,0

Мятлик 22,3±5,6 82,6

Овсяница 32,6±8,5 90,5

2. Вынос цинка растениями, мг/сосуд 102

Вариант Растения

салат редис мятлик овсяница

цеолит > 10% (вариант 1) 7,7±6,4 75,5±3,7 18,9±2,2 42,3±26,9

цеолит < 10% (вариант 2 и 4) 15,4±6,5 112,8±39,9 20,9±6,8 22,0±4,7

Внесение цеолита в почву более 10% (25%) по сравнению с внесением 10% цеолита привело к связыванию им цинка в почве и к меньшему выносу цинка растениями салата и редиса (мг/сосуд) (для мятлика и овсяницы различия недостоверны).

В опыте № 2 изучали вынос из почв свинца, кадмия, железа, цинка проростками вики и овса. Объектами исследования были загрязнённые почвы. Для увеличения подвижности тяжёлых металлов в почвах образцы заливались 0,001 м ЭДТА до 60% ПВ, затем на них выращивались проростки в течение 10 дней. По истечении срока выращивания тяжёлые металлы экстрагировались из проростков 0,1 н НС1 и затем определялись на атомном абсорбционном спектрофотометре. По полученным данным, вынос растениями тяжёлых металлов из почв отличался для почв разного уровня загрязнения, что видно по данным таблицы 3.

3. Вынос растениями тяжёлых металлов

Степень загрязнения Вынос, мг/100 г

Слабая Повышенная 0,85±0,38 1,95±0,55 2,9±0,81 6,7±2,8 6,1±1,9 21,4±5,4 74 ± ± 63

4. Вынос тяжёлых металлов из почв проростками вики и овса (мг/100 г растений)

Проростки РЬ Cd Fe Zn

Вика 1,0±0,4 7,1±2,5 8,5±3,1 2,9±1,0

Овес 0,7±0,2 3,0±1,0 11,4±3,8 2,1±0,6

Вика и овёс отличались по их способности извлекать из почв тяжёлые металлы.

Судя по полученным данным, вика больше вынесла из почв свинца, кадмия, цинка, а овёс - железа.

Серия провёденных экспериментов показала, что очистка городских почв от подвижных форм тяжёлых металлов может быть проведена не только с использованием сорбентов, при осаждении тяжёлых металлов в виде труднорастворимых осадков, с использованием электромелиорации почв и весьма успешно с помощью фитообъектов. Очевидно, что вынос из почв тяжёлых металлов растениями (или микроорганизмами, грибами) зависит от степени подвижности токсикантов в почве и усиливается при создании условий для интенсивного развития растений. Так как разные растения выдерживают и определённый характер, и степень загрязнения, то для биологической очистки городских почв от конкретных металлов следует подбирать и селективные условия их экстракции (в т.ч. изменение физико-химических свойств почв и подбор культур-мелиорантов).

В одном из опытов изучали развитие проростков на образцах почв, взятых в различных районах г. Москвы. В образцах определяли величину рН водной суспензии; оценивали длину корней и стеблей проростков, их массу. Выращивание растений при

оптимальной влажности продолжалось 10 дней. Полученные данные приведены в таблице 5.

5. Развитие проростков на почвах парков и сильнозагрязнённых территориях

Район Масса Корни Стебли

МКАД, т. 1 Скверы, т. 6, 8 0,8 1,7±0,1 2,7 5,2±1,2 7,3 11,6±1,5

Как видно по представленным данным, на сильнозагрязнённых почвах у МКАД растения развивались значительно хуже, чем в скверах города.

С теоретической точки зрения добавление в почву питательного раствора должно улучшить развитие растений, а внесение в почву свинца, наоборот, ухудшить их развитие. В опыте вносили по вариантам питательный раствор и РЬ(СН3СОО)2.

Добавление свинца в загрязнённые почвы привело к полному угнетению растений, а на почвах скверов снизило их массу, уменьшило длину корней и стеблей. В то же время внесение в почву питательного раствора улучшило развитие растений на загрязнённых почвах и почти не изменило развитие на почвах скверов.

В следующем опыте оценивали влияние на содержание тяжёлых металлов в почве растений вики, райграса, горчицы белой. Несмотря на то что растения поглощали из почв определённое количество тяжёлых металлов, содержание их подвижных форм в почвах при этом не уменьшалось в связи с выделением растениями через корневую систему комплексонов и влиянием на подвижность тяжёлых металлов продуктов разложения органических остатков.

Теоретически при внесении в почву KNO3 (при поливе почвы) развитие растений должно улучшаться, а следовательно, должен увеличиваться вынос ими из почв тяжёлых металлов. Однако при этом будет увеличиваться и ионная сила раствора, а следовательно, и растворимость осадков. Будет возрастать и влияние растений на растворимость осадков в почве. В связи с вышесказанным валовое содержание тяжёлых металлов в почвах при такой биологической мелиорации должно уменьшаться, а содержание подвижных форм может возрастать. Аналогичные процессы протекают и при поливе почв ЭДТА (комплексоном на поливалентные металлы). Однако данный реагент не является источником питания растений, и его влияние на растворимость осадков больше, чем KNO3, а на развитие растений меньше. Рассмотренные теоретические закономерности иллюстрируются и данными таблицы 6.

Таким образом, возможны различные способы удаления подвижных форм тяжёлых металлов из верхнего слоя почв, приоритетность использования которых определяется конкретными почвенными, литологическими, гидрологическими условиями и экономическими возможностями. В дополнение

6. Влияние внесения в почвы КЫО, ЭДТА и выращивания растений на содержание подвижных форм тяжёлых металлов в почвах (п=10-30)

Варианты С<1 Си Ми

Вика юго3 ЭДТА Райграс Горчица белая КЖ)3 + вика + райграс + горчица ЭДТА + вика + райграс + горчица 1,10±0,21 0,95±0,10 0,81±0Д0 0,78±0Д9 1,20±0,18 1,08±0,21 0,28±0,13 0,0 0,51±0,16 0,0 0,0 0,90±0,11 0,55±0,06 3,60±0,4 0,79±0,16 1,17±0,53 0,70±0,16 3,90±1Д 2,72±0,8 3,60±1.1 1,70±0,5 1,10±0,2 323,5±47,5 167,7±18,3 332,1±38,9 230,7±43,2 237,5±36,5 212,7±35,1 113,8±42,3 72,4±31,0 373,5±77,2 332,0±67,1 77,9±31,7

к известным способам, с нашей точки зрения, целесообразно добавить следующие:

1) вымывание тяжёлых металлов растворами комплексонов на определённую глубину и затем их осаждение там последующей промывкой почв растворами, содержащими карбонаты, фосфаты, имеющими щелочную среду;

2) удаление из почв за счёт фиторемедиации и поглощения тяжёлых металлов грибами при создании условий для их большей биопродуктивности;

3) регулирование констант обмена в системе почва - корни; корни - надземная часть растений за счёт питательного режима;

4) применение для фиторемедиации видов и сортов растений с большей сорбционной ёмкостью корней к тяжёлым металлам;

5) использование для сорбции тяжёлых металлов сорбентов пролонгированного действия,

учитывая константы равновесия в системе почва - тяжёлый металл и сорбент - тяжёлый металл;

6) уменьшение поступления тяжёлых металлов в растения при внесении в почвы комплексонов из отходов сельскохозяйственного производства, образующих с металлами устойчивые комплексы большой молекулярной массы;

7) электромелиорация почв при создании условий для увеличения подвижности тяжёлых металлов;

8) создание в почвенном профиле геохимических барьеров, препятствующих их поступлению в растения, миграции в грунтовые воды и испарению из почв.

Выбор стратегии при использовании комплекса мероприятий по улучшению состояния городских почв, иногда называемых урбанозёмами, возможен лишь при проведении физико-химического расчета и прогнозирования протекающих процессов для конкретных почв, растений и условий окружающей среды.

Литература

1. Холодова В.П., Волков КС., Кузнецов В.В. Адаптация к высоким концентрациям солей меди и цинка растений хрустальной травки и возможность их использования в целях фиторемедиации // Физиология растений. 2005. Т. 52. С, 848-858.

2. Иванова Е.М., Волков КС., Холодова В.П., Кузнецов В.В. Новые перспективные виттьт растений в фиторемедиации загрязнённых медью территорий // Вестник РУДН. Серия «Агрономия и животноводство». 2011. № 2. С. 28-37.

3. Clemens D. Toxic metal accumulation. Responses to exposure and mechanisms of tolerance in plants, Biochem., 2006, v. 88, p. 1707-1719.

4. Kramer U. Metal hyper-accumulation in plants, Ann. Rev. Plant Biol., 2010, v. 10, p. 517-534.

5. Савич В.И., Белопухов C.JI., Никиточкин, Филиппова А.В. Новые методы очистки почв от тяжёлых металлов / Известия Оренбургского государственного аграрного университета. 2013. № 4. С, 216-218.

Внесение в почву борной кислоты благодаря участию бора в формировании комплексных соединений металлов с производными полисахаридов – пектином и рамногалактуронаномII при формировании сети в матрице клеточной стенки значительно повышает вынос растениямиремедиантами тяжелых металлов из почвы. Существует способ биологической очистки почвы от тяжелых металлов с помощью растенийремедиантов. В предлагаемом способе фиторемедиации в почву вносится борная кислота в низких дозах 0110 кг га что позволяет в десятки раз увеличить вынос...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Способ биологической очистки почв от тяжелых металлов.

1. Краткое описание разработки.

Внесение в почву борной кислоты, благодаря участию бора в формировании комплексных соединений металлов с производными полисахаридов – пектином и рамногалактуронаном-II при формировании сети в матрице клеточной стенки, значительно повышает вынос растениями-ремедиантами тяжелых металлов из почвы. Этот принцип использован при разработке способа фиторемедиации почв, загрязненных тяжелыми металлами. Способ разработан для защиты и восстановления природных ресурсов, является экологически чистым, мало-затратным.

2. Преимущества разработки и сравнение с аналогами.

Существует способ биологической очистки почвы от тяжелых металлов с помощью растений-ремедиантов. В предлагаемом способе фиторемедиации в почву вносится борная кислота в низких дозах (0,1-1,0 кг/га), что позволяет в десятки раз увеличить вынос растениями-ремедиантами тяжелых металлов из загрязненной почвы и регулировать вынос из почвы определенных металлов.

3. Области коммерческого использования разработки.

Фиторемедиация загрязненных тяжелыми металлами почв с использованием борной кислоты до целевых критических значений: 1) в сельском хозяйстве (для земледелия, садоводства, животноводства); 2) в ландшафтном строительстве (для рекреационного землепользования); 3) в городском хозяйстве (для организации зон отдыха на восстановленных территориях); 4) на особо охраняемых природных территориях (для обеспечения условий существования редких и исчезающих видов).

4. Форма защиты интеллектуальной собственности.

Получен Патент на изобретение № 2342822 «Способ биологической очистки почв от тяжелых металлов» от 10.01.2010 г.

Разработчик – ФГБУН ИЛ КарНЦ РАН.

Другие похожие работы, которые могут вас заинтересовать.вшм>

19057. Определение массовой доли тяжелых металлов в пробах почв Тульской области 345.6 KB
Состояние окружающей природной среды является важнейшим фактором определяющим жизнедеятельность человека и общества. Высокие концентрации многих химических элементов и соединений обусловленные техногенными процессами обнаружены в настоящее время во всех природных средах: атмосфере воде почве растениях. Почва - особое природное образование обладающее рядом свойств присущих живой и неживой природе; состоит из генетически связанных горизонтов образуют почвенный профиль возникающих в результате преобразования поверхностных...
12104. Способ очистки почв от нефтепродуктов 17.65 KB
Разработан биотехнологический метод очистки и ремедиации почв при нефтехимическом загрязнении. Определены периоды очищения почв высоких широт от некоторых нефтепродуктов: газового конденсата дизельного топлива мазута машинного масла. Очищение окультуренной подзолистой почвы агрозем от легких углеводородов происходит в течение одного вегетационного периода.
5040. Изучение экологической обстановки в местах проживания населения посредством обнаружения ионов тяжелых металлов в растениях, как маркера экологического благополучия 38.04 KB
В большинстве случаев речь идет о поглощении малых доз свинца и накоплении их в организме пока его концентрация не достигает критического уровня необходимого для токсического проявления. Пища является доминирующим источником поступления свинца в организм человека во всех возрастных группах населения. Важным источником поступления свинца в организм младенцев и детей младшего возраста может быть отравленный организм матери в следствие молоко или же попадание в организм пищи содержащей загрязненную почву пыли или старой свинцовой...
12178. Способ очистки вод от нефти и нефтепродуктов 17.17 KB
Изобретение относится к очистке сточных вод от нефти и нефтепродуктов. Он отличается тем что иммобилизация бактерий флокулами происходит непосредственно в очищаемой воде а бактерии для очистки воды от нефтепродуктов выделяются из местных природных сред загрязненных нефтепродуктами для повышения сорбционной емкости. Предлагаемый способ позволяет достигнуть ПДК нефтепродуктов для рыбохозяйственных водоемов.
12011. Порошковые препараты наночастиц благородных металлов и способ их получения 23.55 KB
В общем случае методы синтеза наночастиц благородных металлов делятся на две категории: методы основанные на диспергировании объемного образца и методы основанные на синтезе коллоидных частиц из солей и или кислот с использованием химических восстановителей или облучения. Вне зависимости от способа получения препараты наночастиц благородных металлов представляют собой водные суспензии которые имеют ограниченный срок хранения. Реализация данного подхода предусматривает следующие основные этапы: синтез наночастиц стабилизацию биосовместимым...
13336. Определение содержания кислоторастворимых форм металлов (свинец, медь, цинк, никель, железо) в пробах почв Тульской области методом атомно-абсорбционной спектроскопии 343.76 KB
Высокие концентрации многих химических элементов и соединений обусловленные техногенными процессами обнаружены в настоящее время во всех природных средах: атмосфере воде почве растениях. Почва особое природное образование обладающее рядом свойств присущих живой и неживой природе; состоит из генетически связанных горизонтов образуют почвенный профиль возникающих в результате преобразования поверхностных слоев литосферы под совместным воздействием воды воздуха и организмов...
19135. Оценка состояния плодородия почв и динамики изменения агрохимических показателей, проведение крупномасштабного агрохимического обследования почв хозяйства «Хомутинка» Нижнеомского района Омской области 23.02 MB
Очень низкие объемы применения минеральных и органических удобрений, прекращение работ по химической мелиорации, продолжающаяся эрозия, упрощение рекомендуемых обработок почвы, использование тяжелой сельскохозяйственной техники ведут к усилению деградации почв. В отдельных случаях плодородие пахотных земель приближается к критическому уровню, что в конечном итоге отрицательно сказывается на эффективности растениеводства.
3781. Индивидуальные и коллективные средства радиационной, химической и биологической защиты 163.76 KB
Средства индивидуальной и коллективной защиты предназначены для сохранения боеспособности личного состава и обеспечения выполнения боевых задач в условиях применения противником оружия массового поражения, а также в условиях воздействия неблагоприятных и поражающих факторов внешней среды
1026. Разработка предложений по совершенствованию контроля качества тяжелых бетонных смесей на предприятии ООО «ПКФ Стройбетон 150.4 KB
Во втором разделе описывается существующие технологии контроля качества бетона на различных этапах его использования: при погрузке транспортировке укладке уходе за бетоном. Показатели качества бетона и бетонной смеси. Приготовление бетонной смеси и ее использование в строительстве.
12277. Использование местного функционального сырья для повышения биологической ценности сухарных изделий 83.84 KB
Использование местного функционального сырья для повышения биологической ценности сухарных изделий Специальность: 5А321001 – Технология производства и переработки пищевых продуктов Технология хлебопекарного макаронного и кондитерского производств ДИССЕРТАЦИЯ на соискание академической степени магистра Научный руководитель: к. Бухара – 2013 2 Задание по...
Краткое описание

Загрязняющие вещества – это вещества антропогенного происхождения, поступающие в окружающую среду в количествах, превышающих природный уровень их поступления.
Загрязнение почв – вид антропогенной деградации, при которой содержание химических веществ в почвах, подверженных антропогенному воздействию, превышает природный региональный фоновый уровень. Превышение содержания определенных химических веществ в окружающей человека среде за счет их поступления из антропогенных источников представляет экологическую опасность.

Прикрепленные файлы: 1 файл

С расширением экологического контроля состояния почв широко стали применять методы определения содержания кислоторастворимых (1 н. HCI, 1 н. HNO3) соединений ТМ. Нередко им присваивают название «условноваловое содержание ТМ» Применение в качестве реагентов разбавленных растворов минеральных кислот не обеспечивает полного разложения пробы, но позволяет перевести в раствор основную часть соединений химических элементов техногенного происхождения.

К подвижным формам ТМ относят элементы и соединения почвенного раствора и твердой фазы почвы, которые находятся в состоянии динамического равновесия с химическими элементами почвенного раствора. Для определения подвижных ТМ в почвах в качестве экстрагента применяют слабо солевые растворы, с ионной силой, близкой к ионной силе природных почвенных растворов: (0,01–0,05М СаCI 2 , Са(NO 3) 2 , KNO 3). Содержание потенциально подвижных соединений контролируемых элементов в почвах определяют в вытяжке 1 н. NH4CH3COO при разных значениях рН. Используют этот экстрагент и с добавлением комплексообразователей (0,02–1,0 М ЭДТА).

Для анализа чаще всего отбирают верхние слои почвы (0–10 см), иногда анализируется распределение загрязняющих веществ в почвенном профиле. Верхние горизонты играют роль геохимического барьера на пути потока веществ, поступающих из атмосферы. В условиях промывного водного режима загрязняющие вещества могут проникать вглубь и накапливаться в иллювиальных горизонтах, которые также служат геохимическими барьерами.

Санитарно-гигиеническим критерием качества окружающей среды служит предельно допустимая концентрация (ПДК) химических веществ в объектах окружающей среды. ПДК соответствует максимальному содержанию химического вещества в природных объектах, которое не вызывает негативного (прямого или косвенного) влияния на здоровье человека (включая отдаленные последствия).

Токсическое действие различных химических веществ на живые организмы характеризуют общесанитарным показателем, в качестве которого часто используют показатель ЛД-50 (летальная доза), который показывает массу вещества, поступившего в организм подопытных животных (мышей, крыс) и вызвавшего гибель 50 % из них. Размерность этого показателя – мг вещества/кг массы подопытного животного. Прямые контакты человека с почвой несущественны и происходят опосредованно через другие компоненты: почва – растение – человек; почва – растение – животное – человек; почва – воздух – человек; почва – вода – человек. Определение ПДК в почвах сводится к экспериментальному определению способности этих веществ поддерживать допустимую для живых организмов концентрацию веществ в контактирующих с почвой воде, воздухе, растениях. Именно поэтому ПДК химических веществ для почв устанавливается не только по общесанитарному показателю, как это принято для других природных сред, а еще и по трем другим показателям: транслокационному, миграционному водному и миграционному воздушному.

Транслокационный показатель определяют по способности почв обеспечивать содержание химических веществ на допустимом уровне в растениях (тест-культурами служат редис, салат, горох, фасоль, капуста и др.).

Соответственно миграционный водный и миграционный воздушный определяют по способности почв обеспечивать содержание этих веществ в воде и воздухе не выше ПДК. Однако санитарно-гигиенические нормативы качества почв не лишены недостатков; основной из них состоит в том, что условия модельного эксперимента определения ПДК и естественные условия сильно отличаются.

Одним из этапов решения проблемы экологического нормирования был подход, основанный на определении допустимой нагрузки на почву с учетом ее буферных свойств, обеспечивающих способность почвы ограничивать подвижность поступающих из вне химических веществ, способность к самоочищению. Такие подходы развиваются в России и в других странах.

Но разработать ПДК для каждого типа почв очень трудно. Целесообразна разработка нормативов химических веществ для почвенно-геохимических ассоциаций, объединенных общностью основных физико-химических свойств, определяющих их устойчивость к химическому загрязнению.

На следующем этапе для ряда химических элементов были разработаны ОДК (ориентировочно допустимые концентрации) этих элементов для почв, различающихся по важнейшим свойствам (по кислотности и гранулометрическому составу). Разработаны они были не на основе стандартизованного экспериментального метода, а на обобщении имеющихся сведений о взаимосвязи между уровнем нагрузки на почвы, состоянием почв и сопредельных сред.

Таблица 3

Список основных химических веществ, загрязняющих почву, для которых определены предельно допустимые концентрации

Вещества

ПДК в почве, мг/кг

Класс опасности

Марганец

Формальдегид

Бенз(а)пирен

Ацетальдегид


4 Методы очистки почвы от тяжелых металлов

На способности переводить металлы в подвижную форму основаны методы очистки почв промывкой, экстракцией, химическим выщелачиванием, электродиализом, электрокинетической обработкой. Металлы удаляются из почвы в виде растворов, которые перерабатываются методами ионного обмена, реагентного осаждения, упаривания, мембранного разделения, электрохимического осаждения, электродиализа с получением твердых остатков с малым объемом, подходящим для размещения на свалках, местах захоронения вредных веществ.

При выборе метода извлечения металлов учитывают их количество в почве, состав и дисперсность твердой фазы. Металлы, которые находятся в обменной форме, извлекаются растворами солей, связанные с карбонатами-растворами кислот, с оксидами железа и марганца-химическими восстановителями, с органическим веществом-растворами комплексообразователей, в виде сульфидов-химическими окислителями.

В биологических методах повышения подвижности тяжелых металлов для их извлечения из почвы используют микроорганизмы и растения. Подвижность металлов повышается:

  • в результате биоминерализации органических веществ, содержащих металлы.
  • в ходе окислительных реакций, протекающих с участием микроорганизмов в процессах биовыщелачивания;
  • в результате изменения рН, Еh почвенной среды при протекании биологических процессов;
  • при образовании растворимых комплексов металлов с органическими веществами, синтезируемыми и выделяемыми микроорганизмами и корнями растений;
  • при биовосстановлении металлов органическими веществами в аноксигенных условиях;
  • в результате перевода металлов в летучую форму при метилировании и трансалкилировании.

Фиксированиие тяжелых металлов почвой понижает их доступность для растений, миграцию по пищевым цепям.

Один из вариантов снижения биодоступности тяжелых металлов-внесение в почву сорбентов.

Из различных сорбентов природного и искусственного происхождения используются цеолиты, бентониты, красная глина, зола, фосфаты, торф, навоз, компост, прудовый ил, биомасса микроорганизмов на различных носителях, отходы шерсти, шелка, отходы, содержащие таннин и клетчатку. Общие требования к сорбентам: рН 6,0-7,5,доступные и относительно дешевые.

В одной из технологий,названной Bio Metal Sludge Reactor (BMSR), разработанной для очистки почв, ила, твердых отходов, используются бактерии Ralstonia metallidurans. Бактерии солюбилизируют металлы с помощью синтезируемых веществ-сидерофоров и сорбируют металлы на клеточной поверхности с помощью индуцируемых металлами белков внешней мембраны, полисахаридов и пептидогликанов клеточной стенки. Бактерии устойчивы к тяжелым металлам. Металлы удаляются из клетки путем антипорта с протонами, что приводит к накоплению ионов ОН - в периплазматическом пространстве, защелачиванию внешней среды и образованию карбонатов и бикарбонатов. Ионы металлов, экспортированные из цитоплазмы, образуют на клеточной поверхности и вокруг клетки карбонаты и бикарбонаты в пересыщенных концентрациях и кристаллизуются на клеточно-связанных металлах, служащих центрами кристаллизации. Это приводит к высокому соотношению металла и биомассы (от 0,5 до 5,0). Такие бактерии удаляют металлы из раствора в поздней фазе экспоненциального роста или в стационарной фазе роста, что удобно для извлечения металлов из контаминированных почв методами ex situ. Бактерии имеют особые свойства, которые обуславливают низкую скорость осаждения бактериальных клеток по сравнению с органическими и глинистыми частицами почвы. Это позволяет разделять почвенные частицы и клетки с поглощенным металлом методом осаждения. Бактерии с сорбированными металлами, находящиеся после разделения в водной фазе, легко удаляются из последней флотацией или флокуляцией.

5 Общие сведения о Ralstonia metallidurans

Рис.1 Изображение Ralstonia metallidurans

Структура клетки и метаболизма

R. Metallidurans- грамотрицательные бактерии, имеющие форму жезла. Таким образом, они имеют структурные особенности грамотрицательных бактерий, такие, как стенки ячеек, содержащих пептидогликан, внешние мембраны, содержащие пластинки и периплазматическое пространства.

R. metallidurans имеет возможность использовать различные субстраты как источник углерода. Он может расти автотрофно, используя молекулярный водород как источник энергии и углекислый газ в качестве источника углерода. Кроме того, в присутствии представителей нитрата, он может расти анаэробно. Они не растут на фруктозе и его оптимальная температура роста-30 C.

Экология

За счет своей способности выдерживать действие токсичных металлов, было изучено использование этой особенности в областях биологического восстановления.

Патология

Было установлено, что R.metallidurans не является для человека патогенной.

Применение в биотехнологии

В R. metallidurans была обнаружена способность производить ферменты, которые могут быть использованы в создании топливных элементов. Эти ферменты способны окислять водород, что в конечном итоге может привести к производству электроэнергии.

6 Технология очистки почвы от тяжелых металлов

При проведении очистки по технологии BMSR загрязненная почва вносится в реактор проточного типа с мешалкой, в который подается вода и питательные вещества (ацетат-5г/л, азот-0,5г/л, фосфор-0,05г/л), вносятся бактерии (в количестве 10 8 кл/мл). Почва предварительно фракционируется для удаления крупных агломератов, дебриса и т.п. Размер частиц в реакторе должен быть не более 2 мм. Показатель рН поддерживается на уровне 7,2. Гидравлическое время пребывания в реакторе составляет от 10 до 20 часов.

В ходе обработки загрязняющие металлы переносятся из почвенных частиц на бактериальные стенки. После обработки в реакторе шлам осаждается в отстойнике, в который добавляется вода. В присутствии бактерий частицы почвы имеют хорошие седиментационные свойства и осаждаются в отстойнике в течение 1-2 часов. Содержащие металлы бактерии остаются в суспензии, которая из отстойника поступает в осадительный танк (декантатор). Внего добавляется флокулянт, после чего осадок биомассы может быть обезвожен и высушен. Содержание металлов в биомассе бактерии составляет: Zn-8-25, Pb-3-5, Cd-0,16-0,25. Эта биомасса может быть сожжена пирометаллургической обработкой с получением золы с высоким содержанием металлов, которые могут быть извлечены выщелачиванием, или с последующим складированием золы на местах захоронения. Содержание тяжелых металлов в очищенной почве уменьшается в 5-10 раз. Почва, обработанная бактериями при нейтральном рН по технологии BMSR, может быть использована повторно. Отработанная вода содержит очень низкие концентрации металлов и может быть рециркулирована.

Расчет процесса биоремедиации почвы от тяжелых металлов.

С участка площадью 6 га были взяты пробы почвы с глубины 9 см (0,09 м). Содержание свинца составляет 50 мг/кг.

1.Определение объема загрязненной почвы.

V п = S п × Н

V п = 6000 м 2 × 0,09 = 540 м 3

2.Вес загрязненной почвы.

Р п = V п × d

Р п = 540 м 3 × 1,2 т/м 3 = 648 т

3.Общий вес тяжелых металлов.

1 кг почвы - 2,5 г ТМ

1 т почвы - 2500 кг ТМ

640 т почвы – х кг ТМ

х = 640 т × 2,5 т = 320 т

ИБЕ микроорганизмов Ralstonia metallidurans составляет 8 м 3 /т ТМ.

х м 3 – 640 т

Устанавливаем количество амофоса.

Для 1 т ТМ – 24 кг АМФ

Р АМФ = 320× 24 =7680 кг АМФ

Растворимость АМФ = 18 кг/м 3 .

Объем воды.

1 м 3 Н 2 О – 18 кг АМФ

х м 3 Н 2 О -104,8 кг

V в = 104,8 /18 = 5,82 т

7680 т + 5,82 т = 7686 т

Выбор участка

Боронование почвы

Транспортировка на ремедиацию

Измельчение до 2 мм

Бактерии

Погрузка в биореактор

Питательные вещества


Отстаивание

Флокулянт


Декантатор

Обезвоживание

Пирометаллургическая обработка


Складирование на местах захоронения

Рис.2 Технологическая схема биоремедиации почвы от тяжелых металлов.

УДК 546.621.631

СОРБЦИОННАЯ ОЧИСТКА ПОЧВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ1

А.И. Везенцев, М.А. Трубицын,

Л.Ф. Г олдовская-Перистая, Н.А. Воловичева

Белгородский государственный университет, 308015, г. Белгород, ул. Победы, 85

[email protected]

Представлены результаты исследования способности глин Белгородской области поглощать ионы РЬ (II) и Си (II) из водной и буферной почвенных вытяжек. В ходе эксперимента установлено оптимальное соотношение глина: почва, при котором очистка почвы от тяжелых металлов наиболее эффективна.

Ключевые слова: глинистые сорбенты, почва, сорбционная активность, монтмориллонит, тяжелые металлы.

Промышленное использование тяжелых металлов весьма многообразно и распространено широко. Именно потому фитотоксичность и вредная аккумуляция в почвах, как правило, наблюдается вблизи предприятий. Тяжелые металлы накапливаются в верхних гумусовых горизонтах почвы и медленно удаляются при выщелачивании, потреблении растениями, эрозии. Гумус и щелочная среда почвы способствуют поглощению тяжелых металлов. Токсичность таких тяжелых металлов, как медь, свинец, цинк, кадмий и др. для сельскохозяйственных культур в природных условиях выражается в понижении урожая коммерческих культур на полях .

Существует несколько методов рекультивации почв, зараженных тяжелыми металлами и другими поллютантами:

Удаление загрязненного слоя и его захоронение;

Инактивация или снижение токсического действия поллютантов с помощью ионообменных смол, органических веществ, образующих хелатные соединения;

Известкование, внесение органических удобрений, сорбирующих поллютанты и снижающих их поступление в растения.

Внесение минеральных удобрений (например фосфатных, снижает токсическое действие свинца, меди, цинка, кадмия);

Выращивание культур, устойчивых к загрязнению .

В настоящее время в мировой практике для экологического рафинирования плодородных почв все большее применение находят минеральные алюмосиликатные адсорбенты: различные глины, цеолиты, цеолитсодержащие породы и т.д., которые характеризуются высокой поглотительной способностью, устойчивостью к воздействиям окружающей среды и могут служить прекрасными носителями для закрепления на поверхности различных соединений при их модифицировании .

Материалы и методы исследования

Данная работа является продолжением ранее проведенных исследований глин Губкинского района Белгородской области, как потенциальных сорбентов для очистки плодородных почв от тяжелых металлов .

1 Работа выполнена при поддержке гранта РФФИ, проект № 06-03-96318.

В данной работе в качестве сорбентов использовали глины киевской свиты Сергиевского месторождения Губкинского района, различные по вещественному составу и свойствам: К-7-05 (средний слой) и К-7-05 ЮЗ (нижний слой). В качестве объектов очистки были использованы образцы почв К-8-05 и №129, отобранные на территории Губ-кинско-Старооскольского промышленного района. Предварительные исследования показали, что глины Сергиевского месторождения хорошо поглощают ионы меди и свинца из модельных водных растворов . Поэтому дальнейшие исследования были проведены с водной и буферной вытяжкой из почвы.

Водную вытяжку готовили по стандартной методике. Сущность метода заключается в извлечении водорастворимых солей из почвы дистиллированной водой при отношении почвы к воде 1: 5 . Концентрацию ионов металлов определяли фотоколори-метрическим методом на приборе КФК-3-01 по соответствующим методикам для каждого металла .

Буферную вытяжку из почвы готовили по стандартной методике Центрального института агрохимического обслуживания сельского хозяйства (ЦИНАО) с помощью ацетатно-аммонийного буферного раствора с рН - 4,8. Этот экстрагент принят агрохимической службой для извлечения доступных растениям микроэлементов . Исходная концентрация подвижных, доступных растениям форм меди и свинца в буферной вытяжке была определена методом атомно-абсорбционной спектрометрии.

Сорбцию ионов меди и свинца проводили при постоянной температуре (20 °С), в статических условиях в течение 90 минут. Соотношение сорбент: сорбат составляло: 1: 250; 1: 50; 1: 25; 1: 8 и 1: 5.

Обсуждение результатов

Проведенное исследование водной вытяжки, которую готовили в течение 4-х часов, показало, что концентрация водорастворимых соединений меди незначительна и составляет 0,0625 мг/кг (в пересчете на ионы Си2). Водорастворимые соединения свинца не обнаружены.

Исходная концентрация ионов тяжелых металлов в буферных вытяжках из почв составила: для почвы К-8-05: Си2+ 2,20 мг/кг, РЬ2+ 1,20 мг/кг; для почвы № 129: Си2+ 4,20 мг/кг, РЬ2+ 8,30 мг/кг.

Результаты определения степени очистки почвы К-8-05 глинами К-7-05 (средний слой) и К-7-05 ЮЗ (нижний слой) представлены в таблице 1.

Таблица 1

Степень очистки буферной вытяжки из почвы К-8-05, масс, %

Соотношение сорбент: сорбат Глина К-7-05 (средний слой) Глина К-7-05 ЮЗ (нижний слой)

Си2+ РЬ2+ Си2+ РЬ2+

1: 250 45,5 33,3 54,5 33,3

1: 50 70,5 45,8 68,2 58,3

1: 25 72,3 58,3 79,5 58,3

1: 8 86,4 75,0 87,3 83,3

1: 5 95,5 83,3 95,5 83,3

Результаты, представленные в таблице 1, показывают, что с увеличением соотношения сорбент: сорбат от 1: 250 до 1: 5 степень очистки буферной вытяжки от ионов меди глиной К-7-05 возрастает от 45,5 до 95,5 %, а от ионов свинца - от 33,3 до 83,3%.

Степень очистки буферной вытяжки глиной К-7-05 ЮЗ с таким же увеличением соотношения возрастала от 54,5 до 95,5 % (для Си2+) и от 33,3 до 83,3 % (для РЬ2+).

К сведению, исходная концентрация ионов меди была больше, чем ионов свинца. Следовательно, очистка буферной вытяжки от ионов меди указанными глинами более эффективна, чем от ионов свинца.

Таблица 2

Степень очистки буферной вытяжки из почвы №129 глиной К-7-05 (средний слой), масс. %

Соотношение сорбент: сорбат Си2+ +

1: 250 39,3 66,7

Примечание: с глиной К-7-05 ЮЗ опыт не был сделан, по причине отсутствия достаточного количества образца.

Результаты, представленные в таблице 2, показывают, что степень очистки буферной вытяжки из почвы №129 глиной К-7-05 с возрастанием соотношения сорбент: сорбат от 1: 250 до 1: 5 увеличивается от 39,3 до 93, 0 % (для ионов меди) и от 66,7 до 94,0 % (для ионов свинца).

Следует обратить внимание, что в этой почве исходная концентрация ионов меди была меньше, чем ионов свинца. Поэтому можно считать, что эффективность очистки от ионов меди данной почвы не хуже, чем почвы К-8-05.

Для уточнения механизма сорбции тяжелых металлов нами была проведена оценка состава и состояния ионообменного комплекса глинистых пород Белгородской области. Установлено, что катионо-обменная емкость изученных образцов варьирует в пределах от 47,62 до 74,51 мэкв/100 г глины.

Проведено комплексное исследование кислотно-основных свойств глин. Определение активной кислотности подтвердило, что все глины имеют щелочной характер. В тоже время рН солевой вытяжки этих же образцов находится в пределах 7,2-7,7, что указывает на обладание этими глинами определенной долей обменной кислотности. Количественно эта величина равна 0,13-0,22 ммоль-экв/100 г глины и обусловлена незначительным содержанием достаточно подвижных обменных протонов. Величина суммы обменных оснований колеблется в достаточно широких пределах 19,6 - 58,6 ммоль-экв/100 г глины. С учетом полученных данных сформулирована гипотеза, что сорбционная способность изученных образцов глин в отношении тяжелых металлов в значительной степени определяется процессами ионного обмена.

Из проведенной работы можно сделать следующие выводы.

С возрастанием соотношения сорбент: сорбат от 1: 250 до 1: 5 степень очистки почв увеличивается: от 40 до 95% (по ионам меди) и от 33 до 94 % (по ионам свинца) при использовании глины Сергиевского месторождения (К-7-05) в качестве сорбента.

Исследованные глины являются более эффективным сорбентом по отношению к ионам меди, чем к ионам свинца.

Установлено, что оптимальное соотношение глина: почва составляет 1: 5. При таком соотношении степень очистки почвы составляет:

Для ионов меди порядка 95 % (мас.)

Для ионов свинца порядка 83,% (мас.)

Список литературы

1. Бингам Ф.Т., Коста М., Эйхенбергер Э. Некоторые вопросы токсичности ионов металлов. - М.:Мир, 1993. - 368 с.

2. Галиулин Р.В., Галиулина Р.А. Фитоэкстракция тяжелых металлов из загрязненных почв // Агрохимия.- 2003.- №3. - С. 77 - 85.

3. Алексеев Ю.В., Лепкович И.П. Кадмий и цинк в растениях луговых фитоценозов // Агрохимия.- 2003.- № 9. - С. 66 - 69.

4. Dayan U., Manusov N., Manusov E., Figovsky O. On lack of interdependency between the abiotic and antropeic factors/// International Scientific Journal for Alternative Energy and Ecology ISJAEE, 2006.-№ 3(35). - P. 34 - 40.

5. Везенцев А.И., Голдовская Л.Ф., Сиднина Н.А., Добродомова Е.В. Зеленцова Е.С. Определение кинетических зависимостей сорбции ионов меди и свинца породами Белгородской области // Научные ведомости БелГУ. Серия Естественные науки.- 2006.-№3 (30), вып.2. - С.85-88

6. Голдовская-Перистая Л.Ф., Везенцев А.И., Сиднина Н.А., Зеленцова Е.С. Исследование валового содержания и содержания подвижных форм кадмия в почвах Губ-кинско-Старооскольского промышленного района // Научные ведомости БелГУ. Серия «Естественные науки».- 2006.-№ 3(23), вып.4. - С.65-68.

7. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства.- М.:ЦИНАО, 1992.-61с.

8. Г осударственный контроль качества вод. - М.: ИПК. Изд-во стандартов, 2001. - 690 с.

SORPTION PURIFICATION OF SOILS FROM HEAVY METALS A.I. Vesentsev, M.A. Troubitsin, L.F. Goldovskaya-Peristaya, N.A. Volovicheva

Belgorod State University, 85 Pobeda Str., Belgorod, 308015 vesentsev@bsu. edu. ru

Results of research of ability of clays of the Belgorod region to absorb ions Pb (II) and Cu (II) from water and buffer soil extracts are presented. During experiment of the optimum ratio clay: ground with most effective purification from heavy metals is established.

Key words: clay sorbents, soil, sorption activity, montmorillonite, heavy metals.

Ухудшающиеся экологические условия оказывают негативное влияние на почву — вследствие загрязнения снижается урожайность и проявляется токсичный эффект.

Благодаря самоочищению почвы происходит постепенное удаление вредных веществ, однако этот процесс занимает достаточно длительное время, а кроме того, скорость процессов загрязнения в техногенной среде ощутимо превышает скорость процессов самоочищения.

Поэтому активно применяются методы искусственного очищения почвы.

Для очистки почвы от загрязнения разработаны различные технологические методы, и регулярно внедряются новые. В первую очередь следует использовать для очистки почвы наиболее экологические и безопасные способы, не забывая про эффективность и финансовые затраты.

Методы очистки почвы

Если рассматривать способы очистки загрязненной почвы, то можно разделить их по принципу действия на следующие категории:

  • химические методы очистки.
  • физические методы очистки.
  • биологические методы очистки.

Физические методы очистки почвы

1) Электрохимическая очистка.

Применяется для удаления из почвы хлорсодержащих углеводородов, различных нефтепродуктов, фенолов. На чем основана работа метода электрохимической очистки? В процессе движения электрического тока сквозь почву осуществляется электролиз воды, электрокоагуляция, реакции электрохимического окисления и электрофлотации. Степень окисления фенола находится в пределах от 70 до 90 процентов.

Качественный уровень обеззараживания почвы при электрохимической очистке приближается к ста процентам (минимальный показатель — 95%). Метод позволяет удалять из почвы также такие вредные элементы как ртуть, свинец, мышьяк, кадмий, цианиды и др.

К минусам метода можно отнести достаточно высокую стоимость (100-250$ за 1 м³ почвы).

2) Электрокинетическая очистка.

Используется для очищения почвы от цианидов, нефти и производных нефти, тяжелых металлов, цианидов, хлористых органических элементов. Типы почв, к которым может успешно применяться электрокинетическая очистка — глинистые и суглинистые, насыщенные влагой частично или полностью.

Технология основана на применении таких процессов как электрофорез и электроосмос. Уровень контроля и воздействия на процессы очищения почвы достаточно высокий. Для использования метода требуется применение химических реактивов или растворов поверхностно-активных веществ.

Эффективность электрокинетической очистки почвы составляет от 80 до 99 процентов. Стоимость несколько ниже чем при электрохимической очистке (100-170$ за 1 м³ почвы).

Химические методы очистки почвы

1) Метод промывки.

Технологии химической очистки почвы подразумевают использование растворов поверхностно-активных веществ или сильные окислители (активный кислород и хлор, щелочные растворы). В основном метод применяется с целью очистки почвы от нефти. Эффективность при методе промывки составляет до 99%.

После того как почва очищена, можно проводить ее рекультивацию.

Из минусов химических методов очистки почвы можно отметить длительные сроки (1-4 года в среднем) и значительное количество загрязненной воды, которую тоже приходится очищать перед выбросом в окружающую среду.

Биологические методы очистки почвы

1) Фитоэкстракция.

Технология очистки засоренных вредными веществами почв методом фитоэкстракции — это выращивание определенных видов растений на загрязненных участках грунта.

Фитоэкстракция демонстрирует хорошие результаты при очистке почвы от медных, цинковых и никелевых соединений, а также кобальта, свинца, марганца, цинка и хрома. Для удаления подавляющего количества указанных элементов из почвы, нужно обеспечить несколько циклов растительных культур.

По окончании процесса фитоэкстракции растения следует собрать и сжечь. Полученный после сжигания пепел считается вредными отходами и подлежит утилизации.

Еще один биологический метод — целенаправленное усиление активности специфической микрофлоры почвы, которая занимается разложением нефти. Также, допустимо добавление определенных микробных культур в почву.

В результате создаются благоприятные условия для микроорганизмов, которые осуществляют утилизацию нефтепродуктов и нефти.
Не менее интересная статья также есть на нашем сайте (прочитано — 7 746 раз)