Медь и ее свойства. Свойства меди и ее применение. Единицы измерения удельного веса

  • 07.05.2022

Синонимы: Купрокупритом были названы тонкие смеси самородной меди и куприта (Вернадский, 1910). Витнеит-whitneyite (Гент, 1859) и дарвинит (Форбс, 1860) - мышьяковистая медь, образующая смеси с альгодонитом.

Происхождение названия

Латинское наименование меди cuprum происходит от названия острова Кипр, откуда в древности ввозили медь. Происхождение русского названия неясно.

Английское название минерала Медь - Copper

  • Химический состав
  • Разновидности
  • Форма нахождения в природе
  • Физические свойства
  • Химические свойства. Прочие свойства
  • Диагностические признаки. Спутники.
  • Происхождение минерала
  • Месторождения
  • Практическое применение
  • Купить

Формула

Химический состав

Содержит иногда примеси Fe, Ag, Pb, Au, Hg, Bi, Sb, V, Ge 3 (серебристая медь с 3-4% Ag, железистая-2,5% Fe и золотистая-2-3% Au). Примеси наблюдаются чаще в первичной самородной меди; вторичная медь обычно более чистая. Состав самородной меди из Шамлугского месторождения (Армения): Cu - 97,20 -97,46%, Fe - 0,25%; в меди из месторождений Алтая определено 98,3% Cu и более.

Кристаллографическая характеристика

Сингония. Кубическая.

Класс. Гексоктаэдрический.

Кристаллическая структура

Для кристаллической структуры характерна гранецентрированная решетка; по углам и в центрах граней элементарного куба расположены атомы меди. Это формальное выражение того, что в структуре меди имеется плотнейшая упаковка (так называемая кубическая плотнейшая упаковка) из атомов металла с радиусом 1,27 А и расстоянием между ближайшими атомами 2,54 А при выполнении пространства в 74,05%. Каждый атом Cu окружен 12 ему подобными (координационное число 12), располагающимися вокруг него по вершинам так называемого Архимедова кубооктаэдра.

Главные формы :а (100), d (110), о (111), l (530), е (210), h (410).

Форма нахождения в природе

Облик кристаллов . Облик кристаллов кубический, тетрагексаэдрический, додекаэдрический, реже - октаэдрический (возможно, псевдоморфозы по куприту). Грани часто шероховатые, с углублениями или возвышениями. Простые кристаллы редки.

Двойники. Двойники срастания по (111) обычны, иногда полисинтетические, часто пластинчатые в направлении двойники оси или удлиненные паралелльны диагонали двойники плоскости. Обычно кристаллы (простые и двойники) неравномерно развиты: вытянуты, укорочены или деформированы. Характерны дендритовидные формы, представляющие собой однообразные срастания множества кристаллов (единообразно деформированных или правильных) по какому-либо одному направлению. Таковы, например, двойниковые по (111) кристаллы, вытянутые по оси симметрии 2-го порядка и сросшиеся параллельно граням ромбического додекаэдра) или срастания правильных двойниковых кристаллов, разветвляющиеся по направлению ребер и диагоналей октаэдрических граней, а также параллельные срастания кристаллов, вытянутых в направлении осей 4-го порядка. В сплошных выделениях самородной меди при травлении обнаруживаются признаки собирательной кристаллизации с развитием крупных зерен за счет более мелких зональных зерен неправильной формы.

Агрегаты. Искаженные кристаллы, в одиночных неправильных зернах, дендритовидные сростки, нитевидные, проволочные, моховидные образования, тонкие пластинки, конкреции, порошковатые скопления и сплошные массы весом до нескольких сотен тонн.

Физические свойства

Оптические

Цвет в свежем изломе светло-розовый, быстро переходящий в медно-красный, затем в коричневый; часто с желтой или пестрой побежалостью.

Черта медно-красная, блестящая.

Блеск металлический.

Прозрачность. Непрозрачна. В тончайших пластинках просвечивает зеленым цветом.

Показатели преломления

Ng = , Nm = и Np =

Механические

Твердость 2,5-3.

Плотность 8,4-8,9

Спайность не наблюдается.

Излом занозистый, крючковатый.

Химические свойства

Легко растворяется в разбавленной HNO 3 и в царской водке, в H 2 SO 4 - при нагревании, в НСl - с трудом. В водном растворе аммиака растворяется, окрашивая его в синий цвет. В полированных шлифах травится всеми основными реактивами. Внутреннее строение легко выявляется с помощью NH 4 OH + Н 2 O 2 или НСl+ CrO 3 (50%-ный раствор).

Прочие свойства

Очень ковка и тягуча. Электропроводность очень высокая; существенно понижается от примесей.

Поведение при нагревании. Чистая медь плавится при 1083°. Теплопроводность несколько меньше, чем у серебра.

Искусственное получение минерала.

Может быть легко получена из расплавов или путем электролиза из растворов солей меди.

Диагностические признаки

Сходные минералы

Узнается по красному цвету свежей поверхности, блестящей черте, средней твердости и ковкости, обычно покрыта зеленоватыми, черными, синими налетами окисленных минералов меди. Под микроскопом в отраженном свете легко определяется по цвету и отражательной способности.

Сопутствующие минералы. Медистое золото, халькозин, кальцит, диопсид, апатит, сфен, магнетит, малахит, барит, кварц, халькопирит.

Происхождение и нахождение

Гидротермальное. Накапливается в россыпях. Как уникальные явления описаны самородки массой до 450 т.

Самородная медь образуется в восстановительных условиях при различных геологических процессах; значительная часть ее выделяется из гидротермальных растворов. В виде микроскопических выделений наблюдается во многих, преимущественно основных, изверженных породах, подвергшихся воздействию гидротермальных растворов, например, в серпентинизированных перидотитах, дунитах и серпентинитах. В этом случае возникновение самородной меди, возможно, связано с разложением ранее образовавшихся медных сульфидов, например, кубанита (Урал, Закавказье). Аналогичное происхождение можно приписать самородной меди в амфиболитизированных основных породах Серовского района Свердловской области. В Карабашском месторождении медистого золота Челябинской области самородная медь наблюдается в жилообразных телах диопсидо-гранатовых пород, залегающих среди серпентинитов; для самородной меди здесь характерна ассоциация с медистым золотом, халькозином, кальцитом, диопсидом, апатитом, сфеном, магнетитом и др.
В некоторых древних вулканических породах (мелафирах, диабазах и др.), метаморфизованных под воздействием паров, газов и гидротермальных растворов, медь выполняет миндалины, образует цемент между минералами измененной лавы, заполняет пустоты и трещины; сопровождается гидротермальными минералами: анальцимом, ломонтитом, пренитом, датолитом, адуляром, хлоритом, эпидотом, пумпелиитом, кварцем, кальцитом. Крупнейшие месторождения этого типа находятся на полуострове Кивино в районе Верхнего озера (штат Мичиган, США), где оруденение приурочено к верхнепротерозойской толще. Главная масса меди добывается из мелафиров и конгломератов, но наиболее крупные выделения меди (до 400 т и более) встречены в кальцитовых жилах, содержащих самородное серебро и домейкит.

Изменение минерала.

Наиболее обычными продуктами изменения самородной меди являются куприт, малахит и азурит.

Месторождения

Выделения самородной меди наблюдались в диабазах Новой Земли, в траппах Сибирской платформы, среди основных эффузивных пород в Италии, на Фарерских островах (Дания), в Новой Шотландии (Канада) и в других местах. Представителями редких типов гипогенных месторождений самородной меди являются цинково-марганцовое месторождение Франклин (штат Нью-Джерси, США) и марганцовые месторождения Лонгбан и Якобсберг (Швеция). Гипогенными, по-видимому, являются выделения самородной меди весом до нескольких тонн из ранее разрабатывавшегося месторождения Калмактас в Казахстане, представленные в музеях прекрасными образцами.
В зоне окисления, особенно в ее нижних частях, самородная медь в основном является ранним продуктом изменения сульфидных медных минералов, главным образом халькозина. Она слагает преимущественно выделения неправильной формы, реже - кристаллы и дендритовидные агрегаты.
Наиболее часто самородная медь сопровождается халькозином, купритом, кальцитом, лимонитом. Наблюдается в ряде месторождений Казахстана (Джезказган, Беркара, Успенское и др.), Рудного Алтая (Белоусовское, Зыряновское, Чудак, Таловское и др.), США (Бисби и Клифтон- Моренси в штате Аризона, Тинтик в штате Юта и др.).
Частью самородная медь в зоне окисления возникает путем отложения из растворов, содержащих сульфат меди. Такова, например, самородная медь, образующая выделения в полостях среди агрегатов лимонита, иногда в ассоциации с купритом (Меднорудянекое месторождение Свердловской обл. и др.). Известны псевдоморфозы самородной меди, образовавшиеся в зоне окисления по халькозину, куприту, антлериту, халькантиту, азуриту, кальциту, арагониту и другим минералам.
Особенно красивые образцы самородной меди (кристаллы и дендритовидные сростки) происходят из Турьинских рудников Свердловской области.
В некоторых горных выработках из медьсодержащих вод на железных предметах выделяется так называемая цементная медь в виде пленок и корочек. Известны также случаи образования меди на полусгнивших остатках крепежной древесины.
В повышенном количестве самородная медь наблюдается в некоторых осадочных породах (песчаниках, глинах, мергелях), содержащих растительные остатки, в виде выделений неправильной формы, иногда в псевдоморфозах по древесине или в виде конкреций. Таковы, например, пермские медистые песчаники отдельных районов России (Приуралье, Татарстан и др.), песчаники Науката в Киргизияи меловые медистые песчаники Корокоро и Кобрицос в Боливии и др.
С восстановительными процессами связано также образование самородной меди в некоторых торфяниках, например,в Свердловской области- по реке Лёвихе в бассейне реки Тагила и в Сысертском районе.
В виде галек и зерен самородная медь встречается в России в некоторых россыпях: на Урале, по Енисею, по реке Б. Сархой в Бурятия, по реке Чорох в Грузии, на Командорских островах и в других местах. В штате Коннектикут (США) самородная медь обнаружена в ледниковых отложениях в виде выделений весом до 75 кг. Мелкие, неправильной формы выделения самородной меди отмечены в самородном железе метеорита Венгерово в ассоциации с троилитом.

Практическое применение

Важная составная часть некоторых медных руд, иногда главный медный минерал таких руд.

Применяется в электротехнике, приборостроении; широко применяются различные сплавы с медью (бронза, латунь, мельхиор).

Физические методы исследования

Дифференциальный термический анализ

Главные линии на рентгенограммах:

Старинные методы. Под паяльной трубкой плавится. При температуре белого каления постепенно окисляется, окрашивая пламя в зеленый цвет.

Render({ blockId: "R-A-248885-7", renderTo: "yandex_rtb_R-A-248885-7", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Кристаллооптические свойства в тонких препаратах (шлифах)

В полированных шлифах в отраженном свете розовая. Отражательная способность (в %): для зеленых лучей - 61, для оранжевых - 83, для красных - 89. Изотропна. Показатели преломления (по Кундту) в призмах для красного света - 0,45, для белого - 0,65, для голубого - 0,95; в отражательном свете (по Друде) для Na-света 0,641,для красного - 0,580. Коэфиэциент поглощения для Na-света - 4,09, для красного света - 5,24.





Медь. Сомородок

Металлическая медь издавна используется человечеством в самых разных областях жизни. Двадцать девятый элемент из периодической таблицы Д. И. Менделеева, находящийся между никелем и цинком, обладает интересными характеристиками и свойствами. Этот элемент обозначается символом Cu. Это один из немногих металлов с характерной окраской, отличной от серебристого и серого цветов.

История появления меди

О том, какое великое значение имел этот химический элемент в истории человечества и планеты, можно догадаться уже по названиям исторических эпох. После каменного века наступил медный, а за ним - бронзовый, также имеющий прямое отношение к этому элементу.

Медь является одним из семи металлов, которые стали известны человечеству еще в древности. Если верить историческим данным, знакомство древних людей с этим металлом произошло примерно девять тысяч лет назад.

Древнейшие изделия из этого материала были обнаружены на территории современной Турции. Археологические раскопки, проведенные на месте крупного поселения времен неолита под названием Чаталхеюк, позволили отыскать небольшие медные шарики-бусины, а также медные пластины, которыми древние люди украшали свой наряд.

Найденные вещицы были датированы стыком восьмого и седьмого тысячелетий до нашей эры. Помимо самих изделий, на месте раскопок был обнаружен шлак, что говорит о производившихся выплавках металла из руды.

Получение меди из руды было относительно доступно. Поэтому несмотря на свою высокую температуру плавления, этот металл в числе первых был быстро и широко освоен человечеством.

Способы добычи

В природных условиях этот химический элемент существует в двух формах:

  • соединения;
  • самородки.

Любопытным фактом является следующее: медные самородки в природе попадаются гораздо более часто, чем золотые, серебряные и железные.

Природные соединения меди - это:

  • оксиды;
  • углекислые и сернистые комплексы;
  • гидрокарбонаты;
  • сульфидные руды.

Рудами, имеющими наибольшее распространение , являются медный блеск и медный колчедан. Меди в этих рудах содержится всего один-два процента. Первичная медь добывается двумя основными способами:

  • гидрометаллургическим;
  • пирометаллургическим.

Доля первого способа составляет десять процентов. Оставшиеся девяносто относятся ко второму методу.

Пирометаллический способ включает в себя комплекс процессов. Сначала медные руды обогащаются и обжигаются. Затем сырье плавится на штейн, после чего продувается в конвертере. Таким образом получается черновая медь. Превращение ее в чистую осуществляется путем рафинирования - сначала огневого, затем электролитического. Это последняя стадия. По ее окончании чистота полученного металла составляет практически сто процентов.

Процесс получения меди гидрометаллургическим способом делится на два этапа.

  1. Вначале сырье выщелачивается при помощи слабого раствора серной кислоты.
  2. На заключительном этапе металл выделяется непосредственно из упомянутого в первом пункте раствора.

Данный метод используется при переработке только бедных руд, так как, в отличие от предыдущего способа, при его проведении невозможно попутно извлечь драгоценные металлы. Именно поэтому приходящийся на этот способ процент так невелик по сравнению с другим методом.

Немного о названии

Химический элемент Cuprum, обозначаемый символом Cu, получил свое название в честь небезызвестного острова Кипр. Именно там в далеком третьем веке до нашей эры были обнаружены крупные месторождения медной руды. Местными мастерами, трудившимися на этих рудниках, производилась выплавка данного металла.

Пожалуй, невозможно понять, что такое металлическая медь, не разобравшись в ее свойствах, основных характеристиках и особенностях.

При контакте с воздухом этот металл становится желтовато-розового цвета. Этот неповторимый золотисто-розовый оттенок обусловливается возникновением на поверхности металла оксидной пленки. Если эту пленку удалить, медь приобретет выразительный розовый цвет с характерным ярким металлическим блеском.

Удивительный факт: тончайшие медные пластинки на просвет имеют вовсе не розовый, а зеленовато-голубой или, иначе говоря, морской цвет.

В форме простого вещества медь обладает следующими характеристиками:

  • удивительной пластичностью;
  • достаточной мягкостью;
  • тягучестью.

Чистая медь без наличия каких-либо примесей превосходно поддается обработке - ее с легкостью можно прокатить в пруток или лист либо вытянуть в проволоку, толщина которой будет доведена до тысячных долей миллиметра. Добавление примесей в этот металл повышает его твердость.

Помимо упомянутых физических характеристик, этот химический элемент обладает высокой электропроводностью. Эта особенность главным образом определила применение металлической меди.

Среди основных свойств этого металла стоит отметить его высокую теплопроводность. По показателям электропроводности и теплопроводности медь является одним из лидеров среди металлов. Более высокими показателями по этим параметрам обладает только один металл - серебро.

Нельзя не принимать во внимание тот факт, что показатели электро- и теплопроводности меди относятся к разряду базовых свойств. Они сохраняются на высоком уровне лишь пока металл находится в чистом виде. Уменьшить эти показатели возможно добавлением примесей:

  • мышьяка;
  • железа;
  • олова;
  • фосфора;
  • сурьмы.

Каждая из этих примесей в сочетании с медью оказывает на нее определенное влияние, в результате которого значения тепло- и электропроводности заметно понижаются.

Помимо всего прочего, металлическая медь характеризуется невероятной прочностью, высокой температурой плавления, а также высокой температурой кипения. Данные действительно впечатляют. Температура плавления меди превышает одну тысячу градусов Цельсия! А температура кипения составляет 2570 градусов Цельсия.

Этот металл относится к группе металлов-диамагнетиков. Это значит, что его намагничивание, как и у ряда других металлов, происходит не по направлению внешнего магнитного поля, а против него.

Еще одной немаловажной характеристикой можно назвать отличную устойчивость этого металла к коррозии. В условиях высокой влажности окисление железа, например, происходит в несколько раз быстрее, чем окисление меди.

Химические свойства элемента

Данный элемент является малоактивным. При контакте с сухим воздухом в обычных условиях медь не начинает окисляться. Влажный воздух, напротив, запускает окислительный процесс, при котором образуется медный карбонат (II), являющийся верхним слоем патины. Практически моментально этот элемент реагирует с такими веществами, как:

  • сера;
  • селен;
  • галогены.

Кислоты, не обладающие окислительными свойствами, не способны оказывать на медь влияние. Кроме того, она никак не реагирует при контакте с такими химическими элементами, как:

  • азот;
  • углерод;
  • водород.

Кроме уже отмеченных химических свойств, для меди характерна амфотерность. Это значит, что в земной коре она способна образовать катионы и анионы. Соединения этого металла могут проявлять как кислотные свойства, так и основные - это напрямую зависит от конкретных условий.

Области и особенности применения

В древние времена металлическая медь использовалась для изготовления самых разных вещей. Умелое применение этого материала позволило древним людям обзавестись:

  • дорогой посудой;
  • украшениями;
  • инструментами, имеющими тонкое лезвие.

Сплавы меди

Говоря о применении меди, нельзя не упомянуть о ее значении в получении различных сплавов, в основу которых ложится именно этот металл. К таким сплавам относятся:

  • бронза ;
  • латунь.

Две эти разновидности явяются основными видами медных сплавов. Первый бронзовый сплав был создан на Востоке еще за три тысячелетия до нашей эры. Бронза по праву может считаться одним из величайших достижений металлургов древности. По сути, бронза - это соединение меди с прочими элементами. В большинстве случаев в роли второго компонента выступает олово. Но вне зависимости от того, какие элементы входят в сплав, основным компонентом всегда является медь. Формула латуни содержит главным образом медь и цинк, но возможны и дополнения к ним в виде других химических элементов.

Помимо бронзы и латуни, этот химический элемент участвует в создании сплавов с другими металлами, среди которых алюминий, золото, никель, олово, серебро, титан, цинк. Медные сплавы с неметаллами, такими как кислород, сера и фосфор, используются гораздо реже.

Отрасли промышленности

Ценные свойства медных сплавов и чистого вещества способствовали их использованию в таких отраслях, как:

  • электротехника;
  • электромашиностроение;
  • приборостроение;
  • радиоэлектроника.

Но, разумеется, это еще не все области применения этого металла. Он является высокоэкологичным материалом. Именно поэтому он используется при строительстве домов. Например, кровельное покрытие, выполненное из металлической меди, благодаря своей высочайшей коррозийной устойчивости обладает сроком службы более сотни лет, не требуя при этом особого ухода и покраски.

Еще одна область использования этого металла - ювелирная отрасль. В основном он применяется в форме сплавов с золотом. Изделия из медно-золотого сплава характеризуются повышенной прочностью, высокой стойкостью. Такие изделия на протяжении долгого времени не деформируются и не истираются.

Соединения металлической меди выделяются высокой биологической активностью. В мире флоры этот металл имеет важное значение, так как он участвует в синтезе хлорофилла. Участие данного элемента в этом процессе позволяет обнаружить его в числе компонентов минеральных удобрений для растений.

Роль в организме человека

Нехватка этого элемента в человеческом организме может оказать негативное влияние на состав крови, а именно ухудшить его. Восполнить дефицит этого вещества можно при помощи специально подобранного питания. Медь содержится во многих продуктах питания, поэтому составить полезный рацион по душе не составит труда. Для примера, одним из продуктов, в составе которых имеется этот элемент, является обычное молоко.

Но составляя насыщенное этим элементом меню, не следует забывать о том, что переизбыток его соединений может привести к отравлению организма. Поэтому, насыщая организм этим полезным веществом, очень важно не переусердствовать. И касается это не только количества потребляемых продуктов.

К примеру, пищевое отравление может вызвать использование медной посуды. Приготовление пищи в такой посуде крайне не рекомендуется и даже воспрещается. Связано это с тем, что в процессе кипячения в пищу поступает значительное количество этого элемента, что может привести к отравлению.

В запрете на медную посуду есть одна оговорка. Использование такой посуды не представляет опасности в том случае, если ее внутренняя поверхность имеет оловянное покрытие. Только при выполнении этого условия использование медных кастрюлек не несет угрозы пищевого отравления.

Помимо всех перечисленных отраслей применения, распространение этого элемента не обошло стороной и медицину. В сфере лечения и поддержания здоровья он применяется в качестве вяжущего вещества и антисептика. Этот химический элемент входит в состав капель для глаз, которые используются при лечении такого заболевания, как конъюнктивит. Кроме того, медь является немаловажным компонентом различных растворов от ожогов.

Медь - элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) - это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

История и происхождение названия

Медь - один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом - бронзы для изготовления оружия и т. п. (см бронзовый век).
Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.
У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков производят русское слово медь (польск. miedz, чешск. med) от древненемецкого smida (металл) и Schmied (кузнец, англ. Smith). Конечно, родство корней в данном случае несомненно, однако, оба эти слова произведены от греч. рудник, копь независимо друг от друга. От этого слова произошли и родственные названия - медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь венера (Venus). В более древние времена встречается название марс (Mars).

Физические свойства

Медь - золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.
Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.
Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра).
Имеет два стабильных изотопа - 63 Cu и 65 Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64 Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.
Существует ряд сплавов меди: латуни - с цинком, бронзы - с оловом и другими элементами, мельхиор - с никелем, баббиты - со свинцом и другие.

Химические свойства

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Современные способы добычи

90 % первичной меди получают пирометаллургическим способом, 10 % - гидрометаллургическим. Гидрометаллургический способ - это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.
Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.
Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700-800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.
После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20-40 % железа, 22-25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 °C.
С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200-1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4 - 99,4 % меди, 0,01 - 0,04 % железа, 0,02 - 0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.
Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0 - 99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.
Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод - из меди огневого рафинирования, а катод - из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5-12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.

Древние греки называли этот элемент халкосом, на латинском она именуется cuprum (Сu) или aes, а средневековые алхимики именовали этот химический элемент не иначе как Марс или Венера. Человечество давно познакомилось с медью за счет того, что в природных условиях ее можно было встретить в виде самородков, имеющих зачастую весьма внушительные размеры.

Легкая восстанавливаемость карбонатов и окислов данного элемента поспособствовала тому, что именно его, по мнению многих исследователей, наши древние предки научились восстанавливать из руды раньше всех остальных металлов.

Сначала медные породы просто-напросто нагревали на открытом огне, а затем резко охлаждали. Это приводило к их растрескиванию, что давало возможность выполнять восстановление металла.

Освоив столь нехитрую технологию, человек начал постепенно развивать ее. Люди научились вдувать при помощи мехов и труб в костры воздух, затем додумались устанавливать вокруг огня стены. В конце концов, была сконструирована и первая шахтная печь.

Многочисленные археологические раскопки позволили установить уникальный факт – простейшие медные изделия существовали уже в 10 тысячелетии до нашей эры! А более активно медь начала добываться и использоваться через 8–10 тысяч лет. Именно с тех пор человечество применяет этот уникальный по многим показателям (плотность, удельный вес, магнитные характеристики и так далее) химический элемент для своих нужд.

В наши дни медные самородки встречаются крайне редко. Медь добывают из различных , среди которых можно выделить следующие:

  • борнит (в нем купрума бывает до 65 %);
  • медный блеск (он же халькозин) с содержанием меди до 80 %;
  • медный колчедан (иначе говоря – халькоперит), содержащий порядка 30 % интересующего нас химического элемента;
  • ковеллин (в нем Cu бывает до 64 %).

Также купрум добывают из малахита, куприта, иных оксидных руд и еще без малого из 20 минералов, содержащих ее в различных количествах.

2

В простом виде описываемый элемент представляет собой металл розовато-красного оттенка, характеризуемый высокими пластичными возможностями. Природный купрум включает в себя два нуклида со стабильной структурой.

Радиус положительно заряженного иона меди имеет следующие значения:

  • при координационном показателе 6 – до 0,091 нм;
  • при показателе 2 – до 0,060 нм.

А нейтральный атом элемента характеризуется радиусом 0,128 нм и сродством к электрону 1,8 эВ. При последовательной ионизации атом имеет величины от 7,726 до 82,7 эВ.

Купрум является переходным металлом, поэтому он имеет переменные степени окисления и малый показатель электроотрицательности (1,9 единиц по шкале Полинга). (коэффициент) равняется 394 Вт/(м*К) при температурном интервале от 20 до 100 °С. Электропроводность меди (удельный показатель) составляет максимум 58, минимум 55,5 МСм/м. Более высокой величиной характеризуется лишь серебро, электропроводность других металлов, в том числе и алюминия, ниже.

Медь не может вытеснять водород из кислот и воды, так как в стандартном потенциальном ряду она стоит правее водорода. Описываемый металл характеризуется гранецентрированной кубической решеткой с величиной 0,36150 нм. Кипит медь при температуре 2657 градусов, плавится при температуре чуть больше 1083 градусов, а ее плотность равняется 8,92 грамм/кубический сантиметр (для сравнения – плотность алюминия равняется 2,7).

Другие механические свойства меди и важные физические показатели:

  • давление при 1628 °С – 1 мм рт. ст.;
  • термическая величина расширения (линейного) – 0,00000017 ед.;
  • при растяжении достигается предел прочности равный 22 кгс/мм2;
  • твердость меди – 35 кгс/мм2 (шкала Бринелля);
  • удельный вес – 8,94 г/см3;
  • модуль упругости – 132000 Мн/м2;
  • удлинение (относительное) – 60 %.

Магнитные свойства меди в какой-то мере уникальны. Элемент полностью диамагнитен, показатель его магнитной атомной восприимчивости составляет всего лишь 0,00000527 ед. Магнитные характеристики меди (впрочем, как и все ее физические параметры – вес, плотность и пр.) обуславливают востребованность элемента для изготовления электротехнических изделий. Примерно такие же характеристики имеются и у алюминия, поэтому они с описываемым металлом составляют "сладкую парочку", используемую для производства проводниковых деталей, проводов, кабелей.

Многие механические показатели меди изменить практически нереально (те же магнитные свойства, например), а вот предел прочности рассматриваемого элемента можно улучшить посредством выполнения наклепа. В данном случае он повысится примерно в два раза (до 420–450 МН/м2).

3

Купрум в системе Менделеева включен в группу благородных металлов (IB), находится он в четвертом периоде, имеет 29 порядковый номер, имеет склонность к комплексообразованию. Химические характеристики меди не менее важны, чем ее магнитные, механические и физические показатели, будь то ее вес, плотность либо иная величина. Поэтому мы будем говорить о них подробно.

Химическая активность купрума мала. Медь в условиях сухой атмосферы изменяется незначительно (можно даже сказать, что почти не изменяется). А вот при повышении влажности и наличии в окружающей среде углекислого газа на ее поверхности обычно формируется пленка зеленоватого оттенка. В ней присутствует CuCO3 и Cu(OH)2, а также различные сернистые медные соединения. Последние образовываются из-за того, что в воздухе практически всегда есть некоторое количество сероводорода и сернистого газа. Указанную зеленоватую пленку именуют патиной. Она защищает от разрушения металл.

Если медь нагреть на воздухе, начнутся процессы окисления ее поверхности. При температурах от 375 до 1100 градусов в результате окисления образуется двухслойная окалина, а при температуре до 375 градусов – оксид меди. При обычной же температуре обычно наблюдается соединение Cu с влажным хлором (итог такой реакции – появление хлорида).

С иными элементами группы галогенов медь также взаимодействует достаточно легко. В парах серы она загорается, высокий уровень сродства она имеет и к селену. Зато с углеродом, азотом и водородом Сu не соединяется даже при повышенных температурах. При контакте оксида меди с серной кислотой (разбавленной) получается сульфат и чистая медь, с иодоводородной и бромоидоводородной кислотой – иодид и бромид меди соответственно.

Если же оксид соединить с той или иной щелочью, результатом химической реакции станет появление купрата. А вот самые известные восстановители (оксид углерода, аммиак, метан и другие) способны восстановить купрум до свободного состояния.

Практический интерес представляет способность этого металла вступать в реакцию с солями железа (в виде раствора). В этом случае фиксируется восстановление железа и переход Cu в раствор. Данная реакция применяется для снятия с декоративных изделий напыленного слой меди.

В одно- и двухвалентных формах медь способна создавать комплексные соединения с высоким показателем устойчивости. К таким соединениям относят аммиачные смеси (они представляют интерес для промышленных предприятий) и двойные соли.

4

Главная сфера применения алюминия и меди известна, пожалуй, всем. Из них делают разнообразные кабели, в том числе и силовые. Способствует этому малое сопротивление алюминия и купрума, их особые магнитные возможности. В обмотках электрических приводов и в трансформаторах (силовых) широко используются медные провода, которые характеризуются уникальной чистотой меди, являющейся исходным сырьем для их выпуска. Если в такое чистейшее сырье добавить всего лишь 0,02 процента алюминия, электропроводимость изделия уменьшится процентов 8–10.

Сu, имеющий высокую плотность и прочность, а также малый вес, прекрасно поддается механической обработке. Это позволяет производить отличные медные трубы, которые демонстрируют свои высокие эксплуатационные характеристики в системах подачи газа, отопления, воды. Во многих европейских государствах именно медные трубы используются в подавляющем большинстве случаев для обустройства внутренних инженерных сетей жилых и административных строений.

Мы много сказали об электропроводимости алюминия и меди. Не забудем и об отличной теплопроводности последней. Данная характеристика дает возможность использовать медь в следующих конструкциях:

  • в тепловых трубках;
  • в кулерах персональных компьютеров;
  • в отопительных системах и системах охлаждения воздуха;
  • в теплообменниках и многих других устройствах, отводящих тепло.

Плотность и небольшой вес медных материалов и сплавов обусловили и их широкое применение в архитектуре.

5

Понятно, что плотность меди, ее вес и всевозможные химические и магнитные показатели, по большому счету, мало интересуют обычного человека. А вот целебные свойства меди хотят узнать многие.

Древние индийцы применяли медь для лечения органов зрения и различных недугов кожных покровов. Древние греки излечивали медными пластинками язвы, сильную отечность, синяки и ушибы, а также и более серьезные болезни (воспаления миндалин, врожденную и приобретенную глухоту). А на востоке медный красный порошок, растворенный в воде, применялся для восстановления сломанных костей ног и рук.

Лечебные свойства меди были хорошо известны и россиянам. Наши предки излечивали с помощью этого уникального металла холеру, эпилепсию, полиартриты и радикулиты. В настоящее время для лечения обычно используются медные пластинки, которые накладываются на специальные точки на теле человека. Целебные свойства меди при такой терапии проявляются в следующем:

  • защитный потенциал организма человека возрастает;
  • инфекционные болезни не страшны тем, кто лечится медью;
  • наблюдается снижение болевых ощущений и снятие воспалительных явлений.