Презентация коррозия металла под воздействием токов. Презентация - коррозия металлов и способы защиты от коррозии. Дайте определение коррозии металлов

  • 21.04.2020

1 из 38

Презентация - Коррозия металлов и способы защиты от коррозии

Текст этой презентации

Урок химии по теме “Коррозия металлов и способы защиты от коррозии"
Подготовила учитель химии СШ РГКП «Республиканский центр реабилитации для детей и подростков» Лепесбаева Сандугаш Кайратовна

Цели урока:
сформировать представление учащихся о механизме коррозийных процессов, об их последствиях и способах защиты от коррозии; развивать умение работать с опорным конспектом, наблюдать, делать выводы; воспитывать эмоциональное отношение к изучаемому явлению.

Чугун
Сплав железа с углеродом (2-4%)
Сталь
Сплав железа с углеродом (меньше 2%)
Применяется в фасонном литье
При добавлении легирующих элементов улучшает качества

В III до нашей эры на острове Родос был построен маяк в виде огромной статуи Гелиоса. Колосс Родосский считался одним из семи чудес света, однако просуществовал всего 66 лет и рухнул во время землетрясения. У Колосса Родосского бронзовая оболочка была смонтирована На железном каркасе. Под действием влажного, насыщенного солями средиземноморского воздуха железный каркас разрушился.

Что является символом Парижа? – Эйфелева башня. Она неизлечима больна, ржавеет и разрушается, и только постоянная химиотерапия помогает бороться с этим смертельным недугом: её красили 18 раз, отчего её масса 9000 т каждый раз увеличивается на 70 т.

Коррозия – рыжая крыса, Грызёт металлический лом. В. Шефнер
Ежегодно в мире «теряется» до ¼ произведённого железа…

А.Н.Несмеянов
Знать – значит победить!

Путешествие по царству «Рыжего дъявола»
ст. Информационная
ст. Экспериментальная
ст. Практическая

разрушение металлов и сплавов под воздействием окружающей среды.
Коррозия

Виды коррозии
По характеру разрушения сплошная (общая): равномерная, неравномерная локальная(местная): точечная, пятнами, язвами, подповерхностная, сквозная и др.

Виды коррозии
сплошная точечная

Язвенная межкристаллитная

Химическая коррозия
- металл разрушается в результате его химического взаимодействия с агрессивной средой (сухими газами, жидкостями-неэлектролитами).
Образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом: 8ē 3Fe0 + 2O20 → (Fe+2Fe2+3)O4-2
Видео- фрагмент
Лабораторный опыт – накаливание медной проволоки

Электрохимическая коррозия
- в среде электролита возникает электрический ток при контакте двух металлов (или на поверхности одного металла, имеющего неоднородную структуру); - коррозия напоминает работу гальванического элемента: происходит перенос электронов от одного участка металла к другому (от металла к включению).
Видео- фрагмент

Образующиеся на аноде ионы Fe2+ окисляются до Fe3+ : 4Fe2+ (водн.) + O2 (г.) + (2n + 4)H2O (ж.) = 2Fe2O3 nH2O (тв.) + 8H+ (водн.)
Коррозия металла на влажном воздухе

Железо слабо прокорродировало в воде, в чистой воде коррозия идет медленнее, т. к. вода слабый электролит.
Сравним результаты опытов № 2 и № 5

Добавка к воде NaCl усиливает коррозию Fe. добавка к раствору NaCl – NaOH, как видно из опыта, наоборот ослабила коррозию, ржавчины получилось мало.
Сравним результаты опытов № 1 и № 2

Т. о. скорость коррозии данного металла зависит от состава омывающей среды. Одни составные части омывающий металл среды, в частности Cl- - ионы усиливают коррозию металлов, другие составные части могут ослаблять коррозию. Коррозия Fe ослабевает в присутствии OH- - ионов.

В обоих случаях Fe находится в одном и том же растворе, но в одном случае оно соприкасается с цинком, а в другом нет. В пробирке № 2 осадок бурого цвета – это ржавчина, а в пробирке № 4 осадок – белого цвета – это Zn(OH)2 Вывод: В опыте № 4 корродировало не Fe, а Zn , т. к. железо почти не корродирует, если оно соприкасается с цинком.
Сравним результаты опытов № 2 и № 4

Окисляется Zn, как более активный металл
А (-)
отщепляющиеся от его атомов
перемещаются на поверхность Fe и восстанавливают
К (+) Fe

В обоих случаях Fe находится в одном и том же растворе, но в одном случае оно соприкасается с медью, а в другом нет. В обеих пробирках произошла коррозия и появился бурый осадок ржавчины. В пробирке №2 ржавчины получилось меньше, чем в пробирке №3. Вывод: таким образом, коррозия и ржавление железа сильно усиливается, когда оно соприкасается с медью.
Сравним результаты опытов № 2 и № 3

А (-)
К (+) Cu
Реакция растворенного в воде кислорода с железом приводит к образованию бурой ржавчины.

Коррозия металла резко усиливается, если он соприкасается с каким-либо другим, менее активным металлом, т. е. расположенным в электрохимическом ряду напряжений металлов правее его. Но коррозия замедляется, если металл соприкасается с другим металлом, расположенным левее в электрохимическом ряду напряжений металлов, т. е. более активным.

Защита от коррозии
- Изоляция металла от среды - - Изменение среды

Барьерная защита
- механическая изоляция поверхности при использовании поверхностных защитных покрытий: неметаллических (лаки, краски, смазки, эмали, гуммирование (резина), полимеры); металлических (Zn, Sn, Al, Cr, Ni, Ag, Au и др.); химических (пассивирование концентрированной азотной кислотой, оксодирование, науглероживание и др.)


Барьерная защита

Какое поверхностное защитное покрытие использовалось в данном случае? К какой группе поверхностных защитных покрытий оно относится?
Видео- фрагмент
Барьерная защита

Изменение состава металла (сплава)
Протекторная защита - добавление в материал покрытия порошковых металлов, создающих с металлом донорские электронные пары; создание контакта с более активным металлом (для стали - цинк, магний, алюминий).
Под действием агрессивной среды постепенно растворяется порошок добавки, а основной материал коррозии не подвергается.

К основной конструкции прикрепляются заклёпки или пластины из более активного металла, которые и подвергаются разрушению. Такую защиту используют в подводных и подземных сооружениях.

Пропускание электрического тока в направлении, противоположном тому, который возникает в процессе коррозии.
Изменение состава металла (сплава)
Электрозащита

В повседневной жизни человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а из второго изготавливают консервные банки.
Изменение состава металла (сплава)
Видео- фрагмент

Введение в металл легирующих добавок: Cr, Ni, Ti, Mn, Mo, V, W и др.
Изменение состава металла (сплава)
Легирование

Изменение среды
Ингибирование
Введение веществ, замедляющих коррозию (ингибиторов): - для кислотной коррозии: азотсодержащие органические основания, альдегиды, белки, серосодержащие органические вещества; - в нейтральной среде: растворимые фосфаты (Na3PO4), дихроматы (K2Cr2O7), сода (Na2CO3), силикаты (Na2SiO3); - при атмосферной коррозии: амины, нитраты и карбонаты аминов, сложные эфиры карбоновых кислот.

В какой пробирке гвоздь не заржавел и почему?
Изменение среды

Изменение среды
Деаэрация - удаление веществ, вызывающих коррозию: нагревание воды; пропускание воды через железные стружки; химическое удаление кислорода (например, 2Na2SO3 + O2 → 2Na2SO4).

Подумай и объясни (домашнее задание)
1. В раствор хлороводородной (соляной) кислоты поместили пластинку из Zn и пластинку из Zn, частично покрытую Cu. В каком случае процесс коррозии происходит интенсивнее? Ответ мотивируйте, составив электронные уравнения соответствующих процессов.
2. Как протекает атмосферная коррозия железа, покрытого слоем никеля, если покрытие нарушено? Составьте электронные уравнения анодного и катодного процессов.

1. На уроке я работал 2. Своей работой на уроке я 3.Урок для меня показался 4. Мое настроение 6. Материал урока мне был активно / пассивно доволен / не доволен коротким / длинным стало лучше / стало хуже понятен / не понятен полезен / бесполезен интересен / скучен
Рефлексия

Код для вставки видеоплеера презентации на свой сайт:




Слово коррозия происходит от латинского «corrodo» – «грызу» (позднелатинское «corrosio» означает «разъедание»). Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.


Химическая коррозия t Fe+ 3 SO O 2 Fe 2 (SO 4) t Fe + 3 Cl 2 2 FeCl t Zn + O 2 2 ZnO Коррозия происходит в непроводящей ток среде. Например, взаимодействие металла с сухими газами или жидкостями - неэлектролитами (бензином, керосином и т.д.)


Многие металлы (например, алюминий) при коррозии покрываются плотной, оксидной пленкой, которая не позволяет окислителям проникнуть в более глубокие слои и потому предохраняет металл от коррозии. При удалении этой пленки металл начинает взаимодействовать с влагой и кислородом воздуха.


Электрохимическая коррозия Коррозия происходит в токопроводящей среде (в электролите) с возникновением внутри системы электрического тока. Металлы не однородны и содержат различные примеси. При контакте их с электролитами одни участки поверхности выполняют роль- анодов, другие- катодов.


Рассмотрим разрушение железного образца в присутствии примеси олова. 1. В кислой среде: На железе, как более активном металле, при соприкосновении с электролитом происходят процессы окисления (растворения) металла и перехода его катионов в электролит: Fe 0 – 2 e = Fe 2+ (анод) На катоде (олово) происходит восстановление катионов водорода: 2H + + 2e H 2 0 Ржавчина не образуется, т.к. ионы железа (Fe 2+) переходят в раствор


2. В щелочной или нейтральной среде: Fe 0 – 2e Fe 2+ (на аноде) O H 2 O + 4e 4OH – (на катоде) ________________________________________________________ Fe OH - Fe(OH) 2 4 Fe (OH) 2 + O 2 + 2H 2 O = 4 Fe (OH) 3 (Ржавчина)



















1. Шлифование поверхностей изделия, чтобы на них не задерживалась влага. 2. Применение легированных сплавов, содержащих специальные добавки: хром, никель, которые при высокой температуре на поверхности металла образуют устойчивый оксидный слой(например Cr 2 O 3).Общеизвестные легированные стали – «нержавейки», из которых изготовляют предметы домашнего обихода(ножи, вилки, ложки), детали машин, инструменты.


3. Нанесение защитных покрытий Неметаллические – неокисляющиеся масла, специальные лаки, краски, эмали. Правда, они недолговечны, но зато дешевы. Химические – искусственно создаваемые поверхностные плёнки: оксидные, нитридные, силицидные, полимерные и др. Например, все стрелковое оружие и детали многих точных приборов подвергают воронению – это процесс получения тончайшей плёнки оксидов железа на поверхности стального изделия.


Металлические – это покрытие другими металлами, на поверхности которых под действием окислителей образуются устойчивые защитные плёнки. Нанесение хрома- хромирование, никеля - никелирование, цинка - цинкование и т.д. Покрытием может служить и пассивный в химическом отношении металл – золото, серебро, медь.


4. Электрохимические методы защиты 4. Электрохимические методы защиты *Протекторная (анодная) – к защищаемой металлической конструкции присоединяют кусочек более активного металла (протектора), который служит анодом и разрушается в присутствии электролита. В качестве протектора при защите корпусов судов, трубопроводов, кабелей и др. стальных изделий используются магний, алюминий, цинк.. *Катодная – металлоконструкцию подсоединяют к катоду внешнего источника тока, что исключает возможность её анодного разрушения.


Введение веществ - ингибиторов, замедляющих коррозию. Примеры использования современных ингибиторов: соляная кислота при перевозке и хранении прекрасно «укрощается» производными бутиламина, а серная кислота –азотной кислотой; летучий диэтиламин впрыскивают в различные ёмкости. Ингибиторы действуют только на металл, делая его пассивным по отношению к среде. Науке известно более 5 тыс. ингибиторов коррозии. Удаление растворённого в воде кислорода (деаэрация). Этот процесс используют при подготовке воды, поступающей в котельные установки. 5. Специальная обработка электролита или другой среды, в которой находится защитная металлическая конструкция



Коррозия металлов

преподаватель химии и биологии ГБОУ НПО РО ПУ № 61 имени Героя Советского Союза Вернигоренко И.Г.


- выяснить, что такое коррозия, её виды, механизм (на примере коррозии железа), способы защиты от коррозии;

Отработать умение выполнять эксперимент, делать выводы из увиденного, составлять полуреакции окисления и восстановления исходя из положения металлов в электрохимическом ряду напряжений.

Цели урока


  • - реакции, протекающие с изменением степеней окисления элементов, называются ….
  • элемент, повышающий степень окисления в результате реакции, называется …
  • процесс присоединения электронов называется ….
  • окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока, называется …
  • катод заряжен …
  • на аноде идёт процесс …
  • при электролизе расплава бромида калия на катоде восстанавливается …
  • при электролизе расплава гидроксида калия на аноде выделяется газообразный …
  • определить окислитель и восстановитель в схеме реакции:

Zn + AgNO 3 – Zn(NO 3 ) 2 + Ag

Химический диктант


В настоящее время мы являемся свидетелями разрушения архитектурных сооружений и конструкций. От кислотных дождей катастрофически страдают памятники (здания и скульптуры), выполненные из известняка или мрамора.


Слово коррозия происходит от латинского corrodere, что означает разъедать. Коррозией называют самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.

Коррозия


А) газы (O 2 ,SO 2 , H 2 S, Cl 2 , NH 3 , NO, NO 2 , H 2 O-пар и т.д.); сажа – адсорбент газов;

Б) электролиты: щёлочи, кислоты, соли;

В) ионы Сl - , влажность воздуха;

Г) макро- и микроорганизмы;

Е) блуждаюший электрический ток;

Ж) разнородность металлов.

Причины коррозии


КОРРОЗИЯ - РЖАВАЯ КРЫСА,

ГРЫЗЕТ МЕТАЛЛИЧЕСКИЙ ЛОМ,

В ШЕФНЕР

4Fe + 6H 2 O + 3O 2 = 4Fe(OH) 3

Коррозийные процессы


Коррозия

Химическая

Электрохимическая

Виды коррозии


Коррозия металлов

По характеру разрушений

По виду коррозийной среды

По процессам

Электрохимическая

Равномерная

Почвенная

Неравномерная

Химическая

Жидкостная

Атмосферная

Классификация


Химическая коррозия обусловлена взаимодействием

металлов с сухими газами или жидкостями,

не проводящими электрического тока

Как правило, протекает

Продукты коррозии образуются непосредственно в местах соприкосновения металла с агрессивной средой

при повышенных

температурах

Коррозионно-активные среды

Скорость коррозионного процесса определяется не только природой металла, но и свойствами образовавшихся продуктов

Оксидная пленка

Прочная, защитная

Рыхлая

Al 2 O 3 , ZnO, NiO, Cr 2 O 3, TiO 2

FeO, Fe 2 O 3 , Fe 3 O 4

Химическая коррозия


Электрохимическая коррозия осуществляется за счет

электрохимических реакций, происходящих

на поверхности металла, находящегося в контакте

с раствором электролита. Она сопровождается

возникновением электрического тока

Пример контактной коррозии


Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb, H 2 , Cu, Hg, Ag, Pt, Au

Ослабление восстановительных свойств, активности

Электрохимический ряд напряжений металлов


СПЛОШНАЯ

не представляет особой опасности для конструкций и аппаратов особенно в тех случаях, когда потери металлов не превышают технически обоснованных норм. Ее последствия могут быть сравнительно легко учтены.

МЕСТНАЯ

потери металла небольшие. Наиболее опасна – точечная коррозия(образование сквозных поражений, точечных полостей – так называемых питтингов. Местной коррозии благоприятствуют морская вода, растворы солей, в частности галогенидных (хлорид натрия, магния и др.). Опасность местной коррозии состоит в том, что, снижая прочность отдельных участков, она резко уменьшает надежность конструкций, сооружений, аппаратов.

Коррозия металлов


Цинковую гранулу опускаем в раствор соляной кислоты. Наблюдаем выделение водорода.

Zn + 2HCl = ZnCl 2 + H 2

Сначала реакция протекает быстро, а затем постепенно замедляется. Это обусловлено тем, что ионы цинка переходят в раствор и образуют у поверхности металла слой положительно заряженных ионов. Этот слой является барьером, препятствующим проникновению одноимённо заряженных ионов водорода к поверхности металла. Кроме того, при растворении цинка в его кристаллической решётке накапливаются электроны, которые затрудняют дальнейший переход поверхностных ионов цинка в раствор. Это и приводит к замедлению взаимодействия цинка с кислотой.

Опыт №1.


К цинку прикасаемся медной проволокой – растворение цинка усиливается.

Это объясняется следующим образом: медь в ряду напряжений металлов находится за водородом и с кислотами, у которых окислителем являются ионы водорода, не взаимодействуют. Поэтому в кристаллической решётке меди свободные электроны не накапливаются. При контакте этих двух металлов свободные электроны цинка переходят к меди и восстанавливают ионы водорода:

+ + 2е = Н 2 0

В этом случае наряду с химическими процессами (отдача электронов) протекают и электрические (перенос электронов от одного металла к другому).

Освободившись от избыточных электронов цинк снова окисляется:

Zn 0 – 2e = Zn 2+

Кроме этого, поверхностные ионы цинка теперь не удерживаются электростатическим притяжением электронов и распределяются по раствору, поэтому цинк в контакте с медью растворяется быстрее. Таким образом, усиление коррозии цинка в контакте с медью объясняется возникновением короткозамкнутого гальванического элемента. В котором цинк выполняет роль анода, а медь – катода.

Опыт №2.


Медную и цинковую пластинки в растворе НСl соединяем проводником, наблюдаем выделение водорода на медной пластинке.

Анод (Zn): Zn 0 – 2e – Zn 2+

Катод (Сu): 2H + + 2e – H 2 0

Аналогично происходит коррозия металлов, которые неоднородны и содержат примеси. В присутствии электролита одни участки поверхности металла играют роль анода, другие – катода.

На катоде происходит окисление атомов металла: Ме 0 – ne = Me n+

При этом на металле остаются избыточные электроны. Роль анода выполняет более активный металл.

На катоде происходит принятие электронов, которые поступают с анода, каким-либо окислителем. В кислотах в качестве окислителя выступают ионы водорода. В нейтральной среде в качестве окислителя преимущественно выступает растворённый кислород, тогда на катоде протекает процесс: О 2 + 4е + 2Н 2 О = 4ОН -

Опыт №3.

1. Легирование металлов, т.е. получение сплавов, которые устойчивы к коррозии.

2. Изоляция металла от окружающей среды достигается применением защитных покрытий. Различают три вида покрытий: (лаки, краски, эмали); химические покрытия (фосфатные, оксидные, нитридные); металлические (никелирование, хромирование, лужение – покрытие оловом). Различают катодные и анодные покрытия. Если защищаемый металл покрыт менее активным металлом, то это – катодное покрытие, например железо покрытое оловом. При нарушении целостности катодного покрытия возникает гальванический элемент, в котором анод – железо разрушается, а катод – олово – остаётся защищённым. Если защищаемый металл покрыт более активным металлом, то это анодное покрытие, например железо покрыто цинком. При нарушении целостности анодного покрытия возникает гальванический элемент, где анод – цинк – разрушается, а катод – железо – остаётся защищённым.

Протекторная защита. К защищаемой металлической конструкции

присоединяют листы (протекторы) из более активного металла. Протектор разрушается, предохраняя защищаемый металл. Данным способом защищают трубопроводы и ёмкости под землёй, корпуса судов и корабельных винтов в морской воде.

4. Изменение свойств агрессивной среды. Достигается двумя способами: 1) удаление из агрессивно сред веществ, которые усиливают коррозию металлов, например кислород кипячением; 2) добавлением в агрессивную среду веществ, которые замедляют коррозию (ингибиторы).

Способы защиты металлов от коррозии .


Цинковая пластинка опускается в сосуд с ингибированной соляной кислотой. Реакция не происходит. Ингибиторами могут быть мочевина, сульфит натрия, тиосульфат натрия, нитрит натрия, фосфаты, карбонаты, силикаты.

Опыт №4.


Контрольные вопросы:

1. Дайте определение коррозии металлов.

2. Какие виды коррозии металлов вам известны.

3. Что способствует процессу коррозии?

4. Рассмотрите процесс коррозии при контакте железа с более активным металлом. Напишите уравнения реакций окисления и восстановления.

4. Зная, что такое коррозия и что ей способствует, предложите способы борьбы с коррозией железных изделий как наиболее распространённых.

5. Какие способы борьбы с коррозией вам известны?

6. Особый интерес представляет протекторная защита. На чём основано её действие? Каков её недостаток?

7. На чём основана катодная защита?

Закрепление знаний


Разрушить проще, чем построить. Потерять гораздо легче, чем найти. Бороться с коррозией нелегко, но возможно. И одно из многочисленных тому доказательств – Эйфелева башня (слайд 38), которую строили в расчёте на то, что прослужит она лет тридцать и её снесут. А она вот уже второе столетие украшает собою Париж…

Итоги урока


1. Для хозяйственных нужд вам необходимо приобрести два железных ведра. В хозяйственном магазине оказались два ведра двух видов: оцинкованное (железо покрыто цинком) и лужёные (железо покрыто оловом). Какое из этих вёдер прослужит дольше? Какому виду вёдер вы отдадите предпочтение? Дайте обоснованный ответ.

2. Вы – слесарь. На стальную деталь (сталь в основном содержит железо и углерод до 2%) поставили медную заклёпку. Знаете ли вы, что раньше разрушится: деталь или заклёпка? Дайте обоснованный ответ.

3. К стенкам парового котла, корпуса судна приваривают листы более активного металла (цинка, магния). Какой металл будет разрушатся в первую очередь? Дайте обоснованный ответ.

4.Одна железная пластина покрыта магнием, а другая медью. На какой пластинке образуется ржавчина при нарушении целостности покрытия? Дайте обоснованный ответ.

Творческие задания.


Учебник «Химия» для профессий НПО и СПО технического цикла О.Г. Габриелян, И.Г. Остроумов, М., «Академия» 2014 год, 256 с. Стр.

Рабочая тетрадь «Металлы и неметаллы»: кроссворд № 1 стр. 27;

Домашнее задание

Слайд 2

Слайд 3

Слайд 4

Слайд 5

Слайд 6

Цель

Исследовать действие факторов окружающей среды на степень ржавления металлов. Гипотеза Если поместить железо в щелочную среду, то скорость коррозии уменьшится.

Слайд 7

Задачи

1. Изучить сущность коррозии, её виды и способы защиты от коррозии. 2.Исследовать зависимость скорости коррозии от присутствия кислорода. 3.Исследовать влияние электролитов на процесс коррозии. 4.Исследовать влияние ингибиторов на процесс коррозии.

Слайд 8

Значение коррозии

1. Вызывает серьезные экологические последствия: утечка нефти, газа, других химических продуктов. 2.Недопустима во многих отраслях промышленности: авиационной, химического, нефтяного и атомного машиностроения. 3.Отрицательно влияет на жизнь и здоровье людей.

Слайд 9

Коррозия - гетерогенный процесс который происходит на границе раздела фаз «металл - окружающая среда». В результате коррозии металлы окисляются и переходят в устойчивые соединения - оксиды или соли, в виде которых они и находятся в природе.

Слайд 10

В случае химическойкоррозии происходит взаимодействие металла непосредственно с окислителем окружающей среды. В результате этого разрушается металлическая связь, и атомы металла соединяются с атомами и группами атомов, входящих в состав окислителей. 2Fe0+3Cl20→-2Fe+3Cl3 3Fe+2O2→Fe3O4 Химическая коррозия.

Слайд 11

Электрохимическая коррозия

Этот вид коррозии встречается наиболее часто и представляет собой процесс взаимодействия металлов и сплавов с электролитами, сопровождающийся самопроизвольным возникновением гальванических пар «катод - анод». Анод на железе(+) Катод на меди(-)Fe 0-2e=Fe2+2H++2e=2H0 →H20

Слайд 12

Факторы вызывающие коррозию

1. Кислород и влага атмосферы 2. Углекислый и сернистый газы, содержащие в атмосфере 3. Морская вода 4. Грунтовые воды

Слайд 13

Эксперимент №1. Роль кислорода в процессе коррозии железа. В пробирке №1-ж. гвоздь+вода на половину. В пробирке №2-ж. гвоздь+вода полностью. В пробирке №3-ж. гвозды-вода+масло.

Слайд 14

Слайд 15

Слайд 16

Эксперимент№2. Влияние электролитов на процесс коррозии. В стакане №1-ж. гвоздь + вода. В стакане №2-ж. гвоздь + раствор хлорида натрия. В стакане №3-ж. гвоздь + медь + раствор хлорида натрия. В стакане №4-ж. гвоздь + алюминий + раствор хлорида натрия.

Слайд 17

Слайд 18

Слайд 19

Эксперимент №3. Влияние ингибиторов на процесс коррозии. В пробирке №1 - ж. гвоздь + раствор гидроксида натрия. В пробирке №2 - ж. гвоздь + раствор фосфата натрия. В пробирке №3 - ж. гвоздь + раствор дихромата натрия.

Слайд 20

Слайд 21

По результатам исследований были сделаны следующие выводы:

1.Коррозия железа резко усиливается в присутствии кислорода. 2.Коррозия железа резко усиливается, если он соприкасается с менее активным металлом, но коррозия замедляется, если железо соприкасается с более активным металлом. 3. Скорость коррозии зависит от состава омывающей металл среды. Хлорид ионы усиливают коррозию железа. 4. Коррозия железа ослабляется в присутствии гидроксид - ионов, фосфат - ионов и хромат - ионов.

У металлов есть враг, который приводит к огромным
безвозвратным потерям металлов, ежегодно полностью
разрушается около 10% производимого железа. По
данным Института физической химии РАН, каждая
шестая домна в России работает впустую – весь
выплавляемый металл превращается в ржавчину.
Этот враг - коррозия.

Проблема защиты металлов от коррозии
возникла почти в самом начале их
использования. Люди пытались защитить
металлы от атмосферного воздействия с
помощью жира, масел, а позднее и
покрытием другими металлами и, прежде
всего, легкоплавким оловом (лужением). В
трудах древнегреческого историка Геродота
(V в. до н.э.) уже имеется упоминание о
применении олова для защиты железа от
коррозии.

В III до нашей эры на острове Родос был построен
маяк в виде огромной статуи Гелиоса.
Колосс Родосский считался одним из семи чудес света,
однако просуществовал всего 66 лет и рухнул во время
землетрясения. У Колосса Родосского бронзовая
оболочка была
смонтирована на
железном каркасе.
Под действием влажного,
насыщенного солями
средиземноморского воздуха
железный каркас разрушился.

В 20 годы ХХ в. по заказу одного миллионера
была построена роскошная яхта “Зов моря”.
Еще до выхода в открытое море яхта полностью
вышла из строя. Причиной была контактная
коррозия. Днище яхты было обшито медноникелевым сплавом, а рама руля, киль и другие
детали изготовлены из стали. Когда яхта была
спущена на воду. Возник гигантский
гальванический элемент, состоящий из катодаднища, стального анода и электролита – морской
воды. В результате судно затонуло, ни сделав ни
одного рейса.

Что является символом
Парижа? –Эйфелева
башня. Она неизлечима
больна, ржавеет и
разрушается, и только
постоянная
химиотерапия помогает
бороться с этим
смертельным недугом:
её красили 18 раз, отчего
её масса 9000 т
каждыйраз
увеличивается на 70 т.

Коррозия – разрушение металлов и
сплавов под воздействием окружающей
среды. Слово коррозия происходит от
латинского corrodere, что означает
разъедать.

Виды коррозии

Химическая коррозия

Химическая коррозия –
это взаимодействие
металлов с сухими
газами и жидкостями –
неэлектролитами.
Такому виду коррозии
подвергаются турбины,
арматура печей и детали
двигателей внутреннего
сгорания.

Электрохимическая коррозия

Электрохимическая
коррозия – это все
случаи коррозии в
присутствии воды и
жидкостей –
электролитов.

Сущность коррозии.

Коррозия состоит из
двух процессов:
химического – это
отдача электронов и
электрического – это
перенос электронов.

Закономерности коррозии:

1. Если соединены
два разных металла,
то коррозии
подвергается только
более активный, и
пока он полностью
не разрушится, менее
активный защищён.

Закономерности коррозии:

2. Скорость коррозии
тем больше, чем
дальше друг от друга
в ряду напряжений
расположены
соединённые
металлы.

Химизм коррозии.

Способы защиты от коррозии.

Одним из наиболее распространенных
способов защиты металлов от коррозии
является нанесение на их поверхность
защитных пленок: лака, краски, эмали.

Широко распространенным способом защиты
металлов от коррозии является покрытие их
слоем других металлов. Покрывающие
металлы сами корродируют с малой
скоростью, так как покрываются плотной
оксидной пленкой. Производят покрытие
цинком, никелем, хромом и др.

Покрытие другими металлами.

В повседневной жизни человек чаще всего
встречается с покрытиями железа цинком и
оловом. Листовое железо, покрытое
цинком, называют оцинкованным железом,
а покрытое оловом – белой жестью. Первое
в больших количествах идет на кровли
домов, а из второго изготавливают
консервные банки.

Способы защиты от коррозии.

Создание сплавов с
антикоррозионными
свойствами. Для этого
в основной металл
добавляют до 12%
хрома, никеля,
кобальта или меди.

Способы защиты от коррозии.

Изменение состава
среды. Для
замедления коррозии
вводятся
ингибиторы. Это
вещества, которые
замедляют скорость
реакции.

Способы защиты от коррозии.

Применение ингибиторов – один из эффективных
способов борьбы с коррозией металлов в различных
агрессивных средах (в атмосферных, в морской воде, в
охлаждающих жидкостях и солевых растворах, в
окислительных условиях и т.д.). Ингибиторы – это
вещества, способные в малых количествах замедлять
протекание химических процессов или останавливать их.
Название ингибитор происходит от лат. inhibere, что
означает сдерживать, останавливать. Известно, что
дамасские мастера для снятия окалины и ржавчины
пользовались растворами серной кислоты с добавками
пивных дрожжей, муки, крахмала. Эти примеси были
одними из первых ингибиторов. Они не позволяли кислоте
действовать на оружейный металл, в результате чего
растворялись лишь окалина и ржавчина.

Электрозащита.

1. Протекторная защита.
К основной конструкции
прикрепляются
заклёпки или пластины
из более активного
металла, которые и
подвергаются
разрушению. Такую
защиту используют в
подводных и подземных
сооружениях.

Электрозащита.

2. Пропускание
электрического тока
в направлении,
противоположном
тому, который
возникает в процессе
коррозии.